Book Image

Python Data Analysis - Third Edition

By : Avinash Navlani, Ivan Idris
5 (1)
Book Image

Python Data Analysis - Third Edition

5 (1)
By: Avinash Navlani, Ivan Idris

Overview of this book

Data analysis enables you to generate value from small and big data by discovering new patterns and trends, and Python is one of the most popular tools for analyzing a wide variety of data. With this book, you’ll get up and running using Python for data analysis by exploring the different phases and methodologies used in data analysis and learning how to use modern libraries from the Python ecosystem to create efficient data pipelines. Starting with the essential statistical and data analysis fundamentals using Python, you’ll perform complex data analysis and modeling, data manipulation, data cleaning, and data visualization using easy-to-follow examples. You’ll then understand how to conduct time series analysis and signal processing using ARMA models. As you advance, you’ll get to grips with smart processing and data analytics using machine learning algorithms such as regression, classification, Principal Component Analysis (PCA), and clustering. In the concluding chapters, you’ll work on real-world examples to analyze textual and image data using natural language processing (NLP) and image analytics techniques, respectively. Finally, the book will demonstrate parallel computing using Dask. By the end of this data analysis book, you’ll be equipped with the skills you need to prepare data for analysis and create meaningful data visualizations for forecasting values from data.
Table of Contents (20 chapters)
1
Section 1: Foundation for Data Analysis
6
Section 2: Exploratory Data Analysis and Data Cleaning
11
Section 3: Deep Dive into Machine Learning
15
Section 4: NLP, Image Analytics, and Parallel Computing

Generating periodic signals

Many natural phenomena are regular and trustworthy, such as an accurate clock. Some phenomena exhibit patterns that seem regular. A group of scientists found three cycles in the sunspot activity with the Hilbert-Huang transform (see https://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform). The cycles have a duration of 11, 22, and 100 years, approximately. Normally, we would simulate a periodic signal using trigonometric functions such as a sine function. You probably remember a bit of trigonometry from high school. That's all we need for this example. Since we have three cycles, it seems reasonable to create a model that is a linear combination of three sine functions. This just requires a tiny adjustment of the code for the autoregressive model:

  1. Create model, error, and fit functions:
# Import required libraries
import numpy as np
import statsmodels.api as sm
from scipy.optimize import leastsq
import matplotlib.pyplot as plt

# Create model function...