Book Image

40 Algorithms Every Programmer Should Know

By : Imran Ahmad
5 (2)
Book Image

40 Algorithms Every Programmer Should Know

5 (2)
By: Imran Ahmad

Overview of this book

Algorithms have always played an important role in both the science and practice of computing. Beyond traditional computing, the ability to use algorithms to solve real-world problems is an important skill that any developer or programmer must have. This book will help you not only to develop the skills to select and use an algorithm to solve real-world problems but also to understand how it works. You’ll start with an introduction to algorithms and discover various algorithm design techniques, before exploring how to implement different types of algorithms, such as searching and sorting, with the help of practical examples. As you advance to a more complex set of algorithms, you'll learn about linear programming, page ranking, and graphs, and even work with machine learning algorithms, understanding the math and logic behind them. Further on, case studies such as weather prediction, tweet clustering, and movie recommendation engines will show you how to apply these algorithms optimally. Finally, you’ll become well versed in techniques that enable parallel processing, giving you the ability to use these algorithms for compute-intensive tasks. By the end of this book, you'll have become adept at solving real-world computational problems by using a wide range of algorithms.
Table of Contents (19 chapters)
1
Section 1: Fundamentals and Core Algorithms
7
Section 2: Machine Learning Algorithms
13
Section 3: Advanced Topics

Strategizing multi-resource processing

Initially, large-scale algorithms were used to run on huge machines called supercomputers. These supercomputers shared the same memory space. The resources were all local—physically placed in the same machine. It means that the communications between the various processors were very fast and they were able to share the same variable through the common memory space. As the systems evolved and the need to run large-scale algorithms grew, the supercomputers evolved into Distributed Shared Memory (DSM) where each processing node used to own a portion of the physical memory. Eventually, clusters were developed, which are loosely coupled and rely on message passing among processing nodes. For large-scale algorithms, we need to find more than one execution engines running in parallel to solve a complex problem:

There are three...