Book Image

40 Algorithms Every Programmer Should Know

By : Imran Ahmad
5 (2)
Book Image

40 Algorithms Every Programmer Should Know

5 (2)
By: Imran Ahmad

Overview of this book

Algorithms have always played an important role in both the science and practice of computing. Beyond traditional computing, the ability to use algorithms to solve real-world problems is an important skill that any developer or programmer must have. This book will help you not only to develop the skills to select and use an algorithm to solve real-world problems but also to understand how it works. You’ll start with an introduction to algorithms and discover various algorithm design techniques, before exploring how to implement different types of algorithms, such as searching and sorting, with the help of practical examples. As you advance to a more complex set of algorithms, you'll learn about linear programming, page ranking, and graphs, and even work with machine learning algorithms, understanding the math and logic behind them. Further on, case studies such as weather prediction, tweet clustering, and movie recommendation engines will show you how to apply these algorithms optimally. Finally, you’ll become well versed in techniques that enable parallel processing, giving you the ability to use these algorithms for compute-intensive tasks. By the end of this book, you'll have become adept at solving real-world computational problems by using a wide range of algorithms.
Table of Contents (19 chapters)
1
Section 1: Fundamentals and Core Algorithms
7
Section 2: Machine Learning Algorithms
13
Section 3: Advanced Topics

Summary

This chapter was about learning the basics of algorithms. First, we learned about the different phases of developing an algorithm. We discussed the different ways of specifying the logic of an algorithm that are necessary for designing it. Then, we looked at how to design an algorithm. We learned two different ways of analyzing the performance of an algorithm. Finally, we studied different aspects of validating an algorithm.

After going through this chapter, we should be able to understand the pseudocode of an algorithm. We should understand the different phases in developing and deploying an algorithm. We also learned how to use Big O notation to evaluate the performance of an algorithm.

The next chapter is about the data structures used in algorithms. We will start by looking at the data structures available in Python. We will then look at how we can use these data structures to create more sophisticated data structures, such as stacks, queues, and trees, which are needed to develop complex algorithms.