Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Apache Mahout Essentials

You're reading from   Apache Mahout Essentials Implement top-notch machine learning algorithms for classification, clustering, and recommendations with Apache Mahout

Arrow left icon
Product type Paperback
Published in Jun 2015
Publisher
ISBN-13 9781783554997
Length 164 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Jayani Withanawasam Jayani Withanawasam
Author Profile Icon Jayani Withanawasam
Jayani Withanawasam
Arrow right icon
View More author details
Toc

From Hadoop MapReduce to Spark

Let's take a look at the journey from MapReduce to Spark.

Problems with Hadoop MapReduce

Even though MapReduce provides a suitable programming model for batch data processing, it does not perform well with real-time data processing. When it comes to iterative machine learning algorithms, it is necessary to carry information across iterations. Moreover, an intermediate outcome needs to be persisted during each iteration. Therefore, it is necessary to store and retrieve temporary data from the Hadoop Distributed File System (HDFS) very frequently, which incurs significant performance degradation.

Machine learning algorithms that can be written in a certain form of summation (algorithms that fit in the statistical query model) can be implemented in the MapReduce programming model. However, some of the machine learning algorithms are hard to implement by adhering to the MapReduce programming paradigm. MapReduce cannot be applied if there are any computational dependencies between the data.

Therefore, this constrained programming model is a barrier for Apache Mahout as it can limit the number of supported distributed algorithms.

In-memory data processing with Spark and H2O

Apache Spark is a large-scale scalable data processing framework, which claims to be 100 times faster than Hadoop MapReduce when in memory and 10 times faster in disk, has a distributed memory-based architecture. H2O is an open source, parallel processing engine for machine learning by 0xdata.

As a solution to the problems of the Hadoop MapReduce approach mentioned previously, Apache Mahout is working on integrating Apache Spark and H2O as the backend integration (with the Mahout Math library).

Why is Mahout shifting from Hadoop MapReduce to Spark?

With Spark, there can be better support for iterative machine learning algorithms using the in-memory approach. In-memory applications are self-optimizing. An algebraic expression optimizer is used for distributed linear algebra. One significant example is the Distributed Row Matrix (DRM), which is a huge matrix partitioned by rows.

Further, programming with Spark is easier than programming with MapReduce because Spark decouples the machine learning logic from the distributed backend. Accordingly, the distribution is hidden from the machine learning API users. This can be used like R or MATLAB.

You have been reading a chapter from
Apache Mahout Essentials
Published in: Jun 2015
Publisher:
ISBN-13: 9781783554997
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image