Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
OpenCV 3 Computer Vision Application Programming Cookbook

You're reading from   OpenCV 3 Computer Vision Application Programming Cookbook Recipes to make your applications see

Arrow left icon
Product type Paperback
Published in Feb 2017
Publisher
ISBN-13 9781786469717
Length 474 pages
Edition 3rd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Robert Laganiere Robert Laganiere
Author Profile Icon Robert Laganiere
Robert Laganiere
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Playing with Images FREE CHAPTER 2. Manipulating Pixels 3. Processing the Colors of an Image 4. Counting the Pixels with Histograms 5. Transforming Images with Morphological Operations 6. Filtering the Images 7. Extracting Lines, Contours, and Components 8. Detecting Interest Points 9. Describing and Matching Interest Points 10. Estimating Projective Relations in Images 11. Reconstructing 3D Scenes 12. Processing Video Sequences 13. Tracking Visual Motion 14. Learning from Examples

Describing and matching local intensity patterns


The SURF and SIFT keypoint detection algorithms, discussed in Chapter 8 , Detecting Interest Points, define a location, an orientation, and a scale for each of the detected features. The scale factor information is useful for defining the size of a window of analysis around each feature point. Thus, the defined neighborhood would include the same visual information no matter at what scale of the object to which the feature belongs has been pictured. This recipe will show you how to describe an interest point's neighborhood using feature descriptors. In image analysis, the visual information included in this neighborhood can be used to characterize each feature point in order to make each point distinguishable from the others. Feature descriptors are usually N-dimensional vectors that describe a feature point in a way that is invariant to change in lighting and to small perspective deformations. Generally, descriptors can be compared using...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image