Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Financial Trading with Python

You're reading from   Hands-On Financial Trading with Python A practical guide to using Zipline and other Python libraries for backtesting trading strategies

Arrow left icon
Product type Paperback
Published in Apr 2021
Publisher Packt
ISBN-13 9781838982881
Length 360 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Sourav Ghosh Sourav Ghosh
Author Profile Icon Sourav Ghosh
Sourav Ghosh
Jiri Pik Jiri Pik
Author Profile Icon Jiri Pik
Jiri Pik
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Section 1: Introduction to Algorithmic Trading
2. Chapter 1: Introduction to Algorithmic Trading FREE CHAPTER 3. Section 2: In-Depth Look at Python Libraries for the Analysis of Financial Datasets
4. Chapter 2: Exploratory Data Analysis in Python 5. Chapter 3: High-Speed Scientific Computing Using NumPy 6. Chapter 4: Data Manipulation and Analysis with pandas 7. Chapter 5: Data Visualization Using Matplotlib 8. Chapter 6: Statistical Estimation, Inference, and Prediction 9. Section 3: Algorithmic Trading in Python
10. Chapter 7: Financial Market Data Access in Python 11. Chapter 8: Introduction to Zipline and PyFolio 12. Chapter 9: Fundamental Algorithmic Trading Strategies 13. Other Books You May Enjoy Appendix A: How to Setup a Python Environment

Chapter 7: Financial Market Data Access in Python

This chapter outlines several key market data sources, ranging from free to paid data sources. A more complete list of available resources can be obtained from https://github.com/wilsonfreitas/awesome-quant#data-sources.

The quality of algorithmic trading models' signals fundamentally depends on the quality of market data being analyzed. Has the market data been cleaned of erroneous records and is there a quality assurance process in place to rectify any errors as they occur? If there is a problem with the market data feed, how quickly can the data be corrected?

The following free data sources described are suitable for learning purposes, but not fit for purpose as regards professional trading – there may be a very low limit on the number of API calls per day, the APIs may be slow, and there is no support and no rectification of the data should it not be correct. In addition, when using any of these data providers...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image