Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Data Cleaning Cookbook

You're reading from   Python Data Cleaning Cookbook Prepare your data for analysis with pandas, NumPy, Matplotlib, scikit-learn, and OpenAI

Arrow left icon
Product type Paperback
Published in May 2024
Publisher Packt
ISBN-13 9781803239873
Length 486 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Michael Walker Michael Walker
Author Profile Icon Michael Walker
Michael Walker
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Anticipating Data Cleaning Issues When Importing Tabular Data with pandas FREE CHAPTER 2. Anticipating Data Cleaning Issues When Working with HTML, JSON, and Spark Data 3. Taking the Measure of Your Data 4. Identifying Outliers in Subsets of Data 5. Using Visualizations for the Identification of Unexpected Values 6. Cleaning and Exploring Data with Series Operations 7. Identifying and Fixing Missing Values 8. Encoding, Transforming, and Scaling Features 9. Fixing Messy Data When Aggregating 10. Addressing Data Issues When Combining DataFrames 11. Tidying and Reshaping Data 12. Automate Data Cleaning with User-Defined Functions, Classes, and Pipelines 13. Index

Anticipating Data Cleaning Issues When Working with HTML, JSON, and Spark Data

This chapter continues our work on importing data from a variety of sources and the initial checks we should do on the data after importing it. Over the last 25 years, data analysts have found that they increasingly need to work with data in non-tabular, semi-structured forms. Sometimes, they even create and persist data in those forms. We will work with a common alternative to traditional tabular datasets in this chapter, JSON, but the general concepts can be extended to XML and NoSQL data stores such as MongoDB. We will also go over common issues that occur when scraping data from websites.

Data analysts have also been finding that increases in the volume of data to be analyzed have been even greater than improvements in machine processing power, at least those computing resources that are available locally. Working with big data sometimes requires us to rely on technology like Apache Spark, which...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image