Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Java 9 Data Structures and Algorithms

You're reading from   Java 9 Data Structures and Algorithms A step-by-step guide to data structures and algorithms

Arrow left icon
Product type Paperback
Published in Apr 2017
Publisher Packt
ISBN-13 9781785889349
Length 340 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Debasish Ray Chawdhuri Debasish Ray Chawdhuri
Author Profile Icon Debasish Ray Chawdhuri
Debasish Ray Chawdhuri
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Why Bother? – Basic FREE CHAPTER 2. Cogs and Pulleys – Building Blocks 3. Protocols – Abstract Data Types 4. Detour – Functional Programming 5. Efficient Searching – Binary Search and Sorting 6. Efficient Sorting – quicksort and mergesort 7. Concepts of Tree 8. More About Search – Search Trees and Hash Tables 9. Advanced General Purpose Data Structures 10. Concepts of Graph 11. Reactive Programming Index

Representation of a graph in memory


A graph can be represented mainly in three different ways: adjacency matrix, adjacency list, and incidence matrix.

Adjacency matrix

An adjacency matrix is a matrix, a table of values, where each value represents an edge and both the rows are the columns that represent the vertices. The values in a matrix can be the members of the entry. The values of the edges can be stored in the matrix itself. There could also be a special value for representing the absence of an edge. The following image shows an adjacency matrix for the graph in Figure 1, where the value of the edge represents the number of edges between the corresponding vertices:

The following things can be noted about an adjacency matrix:

  • Rows are used to represent the sources and columns to represent the targets of the edges

  • In the case of an undirected graph, the source and target are indistinguishable, so the adjacency matrix is symmetric

The following code provides an implementation of the graph ADT...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image