Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning with R Cookbook, Second Edition

You're reading from   Machine Learning with R Cookbook, Second Edition Analyze data and build predictive models

Arrow left icon
Product type Paperback
Published in Oct 2017
Publisher Packt
ISBN-13 9781787284395
Length 572 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Ashish Bhatia Ashish Bhatia
Author Profile Icon Ashish Bhatia
Ashish Bhatia
Yu-Wei, Chiu (David Chiu) Yu-Wei, Chiu (David Chiu)
Author Profile Icon Yu-Wei, Chiu (David Chiu)
Yu-Wei, Chiu (David Chiu)
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Practical Machine Learning with R FREE CHAPTER 2. Data Exploration with Air Quality Datasets 3. Analyzing Time Series Data 4. R and Statistics 5. Understanding Regression Analysis 6. Survival Analysis 7. Classification 1 - Tree, Lazy, and Probabilistic 8. Classification 2 - Neural Network and SVM 9. Model Evaluation 10. Ensemble Learning 11. Clustering 12. Association Analysis and Sequence Mining 13. Dimension Reduction 14. Big Data Analysis (R and Hadoop)

Introduction


Model evaluation is performed to ensure that a fitted model can accurately predict responses for future or unknown subjects. Without model evaluation, we might train models that over-fit in the training data. To prevent overfitting, we can employ packages, such as caret, rminer, and rocr to evaluate the performance of the fitted model.

In the following chapter, we will discuss how one can implement a simple R script or use one of the packages (for example, caret or rminer) to evaluate the performance of a fitted model.

Why do models need to be evaluated?

Whenever we are building a model, it needs to be tested and evaluated to ensure that it will not only work on trained data, but also on unseen data and can generate results with accuracy. A model should not generate a random result though some noise is permitted. If the model is not evaluated properly then the chances are that the result produced with unseen data is not accurate. Furthermore, model evaluation can help select the...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image