Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Reinforcement Learning with TensorFlow

You're reading from   Reinforcement Learning with TensorFlow A beginner's guide to designing self-learning systems with TensorFlow and OpenAI Gym

Arrow left icon
Product type Paperback
Published in Apr 2018
Publisher Packt
ISBN-13 9781788835725
Length 334 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Sayon Dutta Sayon Dutta
Author Profile Icon Sayon Dutta
Sayon Dutta
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Deep Learning – Architectures and Frameworks FREE CHAPTER 2. Training Reinforcement Learning Agents Using OpenAI Gym 3. Markov Decision Process 4. Policy Gradients 5. Q-Learning and Deep Q-Networks 6. Asynchronous Methods 7. Robo Everything – Real Strategy Gaming 8. AlphaGo – Reinforcement Learning at Its Best 9. Reinforcement Learning in Autonomous Driving 10. Financial Portfolio Management 11. Reinforcement Learning in Robotics 12. Deep Reinforcement Learning in Ad Tech 13. Reinforcement Learning in Image Processing 14. Deep Reinforcement Learning in NLP 15. Further topics in Reinforcement Learning 16. Other Books You May Enjoy

Deep Learning – Architectures and Frameworks

Artificial neural networks are computational systems that provide us with important tools to solve challenging machine learning tasks, ranging from image recognition to speech translation. Recent breakthroughs, such as Google DeepMind's AlphaGo defeating the best Go players or Carnegie Mellon University's Libratus defeating the world's best professional poker players, have demonstrated the advancement in the algorithms; these algorithms learn a narrow intelligence like a human would and achieve superhuman-level performance. In plain speech, artificial neural networks are a loose representation of the human brain that we can program in a computer; to be precise, it's an approach inspired by our knowledge of the functions of the human brain. A key concept of neural networks is to create a representation space of the input data and then solve the problem in that space; that is, warping the data from its current state in such a way that it can be represented in a different state where it can solve the concerned problem statement (say, a classification or regression). Deep learning means multiple hidden representations, that is, a neural network with many layers to create more effective representations of the data. Each layer refines the information received from the previous one.

Reinforcement learning, on the other hand, is another wing of machine learning, which is a technique to learn any kind of activity that follows a sequence of actions. A reinforcement learning agent gathers the information from the environment and creates a representation of the states; it then performs an action that results in a new state and a reward (that is, quantifiable feedback from the environment telling us whether the action was good or bad). This phenomenon continues until the agent is able to improve the performance beyond a certain threshold, that is, maximizing the expected value of the rewards. At each step, these actions can be chosen randomly, can be fixed, or can be supervised using a neural network. The supervision of predicting action using a deep neural network opens a new domain, called deep reinforcement learning. This forms the base of AlphaGo, Libratus, and many other breakthrough research in the field of artificial intelligence.

We will cover the following topics in this chapter:

  • Deep learning
  • Reinforcement learning
  • Introduction to TensorFlow and OpenAI Gym
  • The influential researchers and projects in reinforcement learning
You have been reading a chapter from
Reinforcement Learning with TensorFlow
Published in: Apr 2018
Publisher: Packt
ISBN-13: 9781788835725
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image