Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Functional Python Programming, 3rd edition

You're reading from   Functional Python Programming, 3rd edition Use a functional approach to write succinct, expressive, and efficient Python code

Arrow left icon
Product type Paperback
Published in Dec 2022
Publisher Packt
ISBN-13 9781803232577
Length 576 pages
Edition 3rd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Steven F. Lott Steven F. Lott
Author Profile Icon Steven F. Lott
Steven F. Lott
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface
1. Chapter 1: Understanding Functional Programming FREE CHAPTER 2. Chapter 2: Introducing Essential Functional Concepts 3. Chapter 3: Functions, Iterators, and Generators 4. Chapter 4: Working with Collections 5. Chapter 5: Higher-Order Functions 6. Chapter 6: Recursions and Reductions 7. Chapter 7: Complex Stateless Objects 8. Chapter 8: The Itertools Module 9. Chapter 9: Itertools for Combinatorics – Permutations and Combinations 10. Chapter 10: The Functools Module 11. Chapter 11: The Toolz Package 12. Chapter 12: Decorator Design Techniques 13. Chapter 13: The PyMonad Library 14. Chapter 14: The Multiprocessing, Threading, and Concurrent.Futures Modules 15. Chapter 15: A Functional Approach to Web Services 16. Other Books You Might Enjoy
17. Index

10.7 Summary

In this chapter, we’ve looked at a number of functions in the functools module. This library module provides a number of functions that help us create sophisticated functions and classes.

We’ve looked at the @cache and @lru_cache decorators as ways to boost certain types of applications with frequent re-calculations of the same values. These two decorators are of tremendous value for certain kinds of functions that take integer or string argument values. They can reduce processing by simply implementing memoization. The @lru_cache has an upper bound on the memory it will use; this is good for a domain with an unknown size.

We looked at the @total_ordering function as a decorator to help us build objects that support rich ordering comparisons. This is at the fringe of functional programming, but is very helpful when creating new kinds of numbers.

The partial() function creates a new function with the partial application of argument values. As an alternative...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image