Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Machine Learning with R

You're reading from   Mastering Machine Learning with R Master machine learning techniques with R to deliver insights for complex projects

Arrow left icon
Product type Paperback
Published in Oct 2015
Publisher
ISBN-13 9781783984527
Length 400 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Cory Lesmeister Cory Lesmeister
Author Profile Icon Cory Lesmeister
Cory Lesmeister
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. A Process for Success FREE CHAPTER 2. Linear Regression – The Blocking and Tackling of Machine Learning 3. Logistic Regression and Discriminant Analysis 4. Advanced Feature Selection in Linear Models 5. More Classification Techniques – K-Nearest Neighbors and Support Vector Machines 6. Classification and Regression Trees 7. Neural Networks 8. Cluster Analysis 9. Principal Components Analysis 10. Market Basket Analysis and Recommendation Engines 11. Time Series and Causality 12. Text Mining A. R Fundamentals Index

Model selection

What are we to make of all this? We have the confusion matrices from our models to guide us, but we can get a little more sophisticated when it comes to selecting the classification models. An effective tool for a classification model comparison is the Receiver Operating Characteristic (ROC) chart. Very simply, ROC is a technique for visualizing, organizing, and selecting the classifiers based on their performance (Fawcett, 2006). On the ROC chart, the y-axis is the True Positive Rate (TPR) and the x-axis is the False Positive Rate (FPR). The following are the calculations, which are quite simple:

  • TPR = Positives correctly classified / total positives
  • FPR = Negatives incorrectly classified / total negatives

Plotting the ROC results will generate a curve, and thus, you are able to produce the Area Under the Curve (AUC). The AUC provides you with an effective indicator of performance and it can be shown that the AUC is equal to the probability that the observer will correctly...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image