Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
R Deep Learning Cookbook

You're reading from   R Deep Learning Cookbook Solve complex neural net problems with TensorFlow, H2O and MXNet

Arrow left icon
Product type Paperback
Published in Aug 2017
Publisher Packt
ISBN-13 9781787121089
Length 288 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Achyutuni Sri Krishna Rao Achyutuni Sri Krishna Rao
Author Profile Icon Achyutuni Sri Krishna Rao
Achyutuni Sri Krishna Rao
PKS Prakash PKS Prakash
Author Profile Icon PKS Prakash
PKS Prakash
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Getting Started FREE CHAPTER 2. Deep Learning with R 3. Convolution Neural Network 4. Data Representation Using Autoencoders 5. Generative Models in Deep Learning 6. Recurrent Neural Networks 7. Reinforcement Learning 8. Application of Deep Learning in Text Mining 9. Application of Deep Learning to Signal processing 10. Transfer Learning

Setting up the Transfer Learning model


The current recipe will cover Transfer Learning using the CIFAR-10 dataset. The previous recipe presented how to use a pretrained model. The current recipe will demonstrate how to use a pretrained model for different problem statements.

We will use another very good deep learning package, MXNET, to demonstrate the concept with another architecture, Inception. To simplify the computation, we will reduce the problem complexity from 10 classes to two classes: aeroplane and automobile. The recipe focuses on data preparation for Transfer Learning using Inception-BN.

Getting ready

The section prepares for the upcoming section for setting-up Transfer Learning model.

  1. Download the CIFAR-10 dataset from http://www.cs.toronto.edu/~kriz/cifar.html. Thedownload.cifar.datafunction from Chapter 3,Convolution Neural Networks, can be used to download the dataset.
  2. Install the imager package:
install.packages("imager")

How to do it...

The current part of the recipe will provide...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image