Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Practical Automated Machine Learning Using H2O.ai

You're reading from   Practical Automated Machine Learning Using H2O.ai Discover the power of automated machine learning, from experimentation through to deployment to production

Arrow left icon
Product type Paperback
Published in Sep 2022
Publisher Packt
ISBN-13 9781801074520
Length 396 pages
Edition 1st Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Salil Ajgaonkar Salil Ajgaonkar
Author Profile Icon Salil Ajgaonkar
Salil Ajgaonkar
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Part 1 H2O AutoML Basics
2. Chapter 1: Understanding H2O AutoML Basics FREE CHAPTER 3. Chapter 2: Working with H2O Flow (H2O’s Web UI) 4. Part 2 H2O AutoML Deep Dive
5. Chapter 3: Understanding Data Processing 6. Chapter 4: Understanding H2O AutoML Architecture and Training 7. Chapter 5: Understanding AutoML Algorithms 8. Chapter 6: Understanding H2O AutoML Leaderboard and Other Performance Metrics 9. Chapter 7: Working with Model Explainability 10. Part 3 H2O AutoML Advanced Implementation and Productization
11. Chapter 8: Exploring Optional Parameters for H2O AutoML 12. Chapter 9: Exploring Miscellaneous Features in H2O AutoML 13. Chapter 10: Working with Plain Old Java Objects (POJOs) 14. Chapter 11: Working with Model Object, Optimized (MOJO) 15. Chapter 12: Working with H2O AutoML and Apache Spark 16. Chapter 13: Using H2O AutoML with Other Technologies 17. Index 18. Other Books You May Enjoy

Understanding H2O AutoML Leaderboard and Other Performance Metrics

When we train ML models, the statistical nuances of different algorithms often make it difficult to compare one model with another model that is trained using a different algorithm. From a professional standpoint, you will eventually need to select the right model to solve your ML problem. So, the question arises: how do you compare two different models solving the same ML problem and decide which one is better?

This is where model performance metrics come in. Model performance metrics are certain numerical metrics that give an accurate measurement of a model’s performance. The performance of a model can mean various things and can also be measured in several ways. The way we evaluate a model, whether it is a classification model or a regression model, only differs by the metrics that we use for that evaluation. You can measure how accurately the model classifies objects by measuring the number of correct...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image