Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Data Science with R

You're reading from   Hands-On Data Science with R Techniques to perform data manipulation and mining to build smart analytical models using R

Arrow left icon
Product type Paperback
Published in Nov 2018
Publisher Packt
ISBN-13 9781789139402
Length 420 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (4):
Arrow left icon
Nataraj Dasgupta Nataraj Dasgupta
Author Profile Icon Nataraj Dasgupta
Nataraj Dasgupta
Vitor Bianchi Lanzetta Vitor Bianchi Lanzetta
Author Profile Icon Vitor Bianchi Lanzetta
Vitor Bianchi Lanzetta
Doug Ortiz Doug Ortiz
Author Profile Icon Doug Ortiz
Doug Ortiz
Ricardo Anjoleto Farias Ricardo Anjoleto Farias
Author Profile Icon Ricardo Anjoleto Farias
Ricardo Anjoleto Farias
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Getting Started with Data Science and R FREE CHAPTER 2. Descriptive and Inferential Statistics 3. Data Wrangling with R 4. KDD, Data Mining, and Text Mining 5. Data Analysis with R 6. Machine Learning with R 7. Forecasting and ML App with R 8. Neural Networks and Deep Learning 9. Markovian in R 10. Visualizing Data 11. Going to Production with R 12. Large Scale Data Analytics with Hadoop 13. R on Cloud 14. The Road Ahead 15. Other Books You May Enjoy

KDD, Data Mining, and Text Mining

"Certainty of death. Small chance of success. What are we waiting for?"
- Gimli, son of Gloin

Aside from being a buzzword, data mining is the analysis step from Knowledge Discovery in Databases (KDDs), which is concerned with uncovering hidden patterns from huge unstructured datasets. The term data mining doesn't define a single method, but a broad collection of used methods. Those methods range from linear regressions and clustering techniques, all the way to visualizations, random forests, and artificial intelligence methods.

You may have already noticed, but it's not that easy to set apart what data mining is from data science. I mostly think about data mining as something that data scientists are doing to big data (another...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image