Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Predictive Analytics with R

You're reading from   Mastering Predictive Analytics with R Master the craft of predictive modeling by developing strategy, intuition, and a solid foundation in essential concepts

Arrow left icon
Product type Paperback
Published in Jun 2015
Publisher
ISBN-13 9781783982806
Length 414 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Toc

Table of Contents (13) Chapters Close

Preface 1. Gearing Up for Predictive Modeling 2. Linear Regression FREE CHAPTER 3. Logistic Regression 4. Neural Networks 5. Support Vector Machines 6. Tree-based Methods 7. Ensemble Methods 8. Probabilistic Graphical Models 9. Time Series Analysis 10. Topic Modeling 11. Recommendation Systems Index

Predicting recommendations for movies and jokes


In this chapter, we will focus on building recommender systems using two different data sets. To do this, we shall use the recommenderlab package. This provides us with not only the algorithms to perform the recommendations, but also with the data structures to store the sparse rating matrices efficiently. The first data set we will use contains anonymous user reviews for jokes from the Jester Online Joke recommender system.

The joke ratings fall on a continuous scale (-10 to +10). A number of data sets collected from the Jester system can be found at http://eigentaste.berkeley.edu/dataset/. We will use the data set labeled on the website as Dataset 2+. This data set contains ratings made by 50,692 users on 150 jokes. As is typical with a real-world application, the rating matrix is very sparse in that each user rated only a fraction of all the jokes; the minimum number of ratings made by a user is 8. We will refer to this data set as the jester...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image