Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Neural Network Programming with TensorFlow

You're reading from   Neural Network Programming with TensorFlow Unleash the power of TensorFlow to train efficient neural networks

Arrow left icon
Product type Paperback
Published in Nov 2017
Publisher Packt
ISBN-13 9781788390392
Length 274 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Manpreet Singh Ghotra Manpreet Singh Ghotra
Author Profile Icon Manpreet Singh Ghotra
Manpreet Singh Ghotra
Rajdeep Dua Rajdeep Dua
Author Profile Icon Rajdeep Dua
Rajdeep Dua
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Maths for Neural Networks FREE CHAPTER 2. Deep Feedforward Networks 3. Optimization for Neural Networks 4. Convolutional Neural Networks 5. Recurrent Neural Networks 6. Generative Models 7. Deep Belief Networking 8. Autoencoders 9. Research in Neural Networks 10. Getting started with TensorFlow

Preface

If you're aware of the buzz surrounding terms such as machine learning, artificial intelligence, or deep learning, you might know what neural networks are. Ever wondered how they help solve complex computational problems efficiently, or how to train efficient neural networks? This book will teach you both of these things, and more.

You will start by getting a quick overview of the popular TensorFlow library and see how it is used to train different neural networks. You will get a thorough understanding of the fundamentals and basic math for neural networks and why TensorFlow is a popular choice. Then, you will proceed to implement a simple feedforward neural network. Next, you will master optimization techniques and algorithms for neural networks using TensorFlow. Further, you will learn how to implement some more complex types of neural networks such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), and Deep Belief Networks 0;(DBNs). In the course of the book, you will be working on real-world datasets to get a hands-on understanding of neural network programming. You will also get to train generative models and will learn the applications of autoencoders.

By the end of this book, you will have a fair understanding of how to leverage the power of TensorFlow to train neural networks of varying complexities, without any hassle.

lock icon The rest of the chapter is locked
Next Section arrow right
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image