Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Deep Reinforcement Learning Hands-On

You're reading from   Deep Reinforcement Learning Hands-On Apply modern RL methods to practical problems of chatbots, robotics, discrete optimization, web automation, and more

Arrow left icon
Product type Paperback
Published in Jan 2020
Publisher Packt
ISBN-13 9781838826994
Length 826 pages
Edition 2nd Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Maxim Lapan Maxim Lapan
Author Profile Icon Maxim Lapan
Maxim Lapan
Arrow right icon
View More author details
Toc

Table of Contents (28) Chapters Close

Preface 1. What Is Reinforcement Learning? 2. OpenAI Gym FREE CHAPTER 3. Deep Learning with PyTorch 4. The Cross-Entropy Method 5. Tabular Learning and the Bellman Equation 6. Deep Q-Networks 7. Higher-Level RL Libraries 8. DQN Extensions 9. Ways to Speed up RL 10. Stocks Trading Using RL 11. Policy Gradients – an Alternative 12. The Actor-Critic Method 13. Asynchronous Advantage Actor-Critic 14. Training Chatbots with RL 15. The TextWorld Environment 16. Web Navigation 17. Continuous Action Space 18. RL in Robotics 19. Trust Regions – PPO, TRPO, ACKTR, and SAC 20. Black-Box Optimization in RL 21. Advanced Exploration 22. Beyond Model-Free – Imagination 23. AlphaGo Zero 24. RL in Discrete Optimization 25. Multi-agent RL 26. Other Books You May Enjoy
27. Index

Results

Let's now take a look at the results.

The feed-forward model

The convergence on Yandex data for one year requires about 10M training steps, which can take a while. (GTX 1080 Ti trains at a speed of 230-250 steps per second.)

During the training, we have several charts in TensorBoard showing us what's going on.

Figure 10.3: The reward for episodes during the training

Figure 10.4: The reward for test episodes

The two preceding charts show the reward for episodes played during the training and the reward obtained from testing (which is done on the same quotes, but with epsilon=0). From them, we see that our agent is learning how to increase the profit from its actions over time.

Figure 10.5: The lengths of played episodes

Figure 10.6: The values predicted by the network on a subset of states

The lengths of episodes also increased after 1M training iterations. The number of values predicted by the network is growing.

...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image