Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
OpenCV with Python By Example

You're reading from   OpenCV with Python By Example Build real-world computer vision applications and develop cool demos using OpenCV for Python

Arrow left icon
Product type Paperback
Published in Sep 2015
Publisher Packt
ISBN-13 9781785283932
Length 296 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Prateek Joshi Prateek Joshi
Author Profile Icon Prateek Joshi
Prateek Joshi
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Applying Geometric Transformations to Images FREE CHAPTER 2. Detecting Edges and Applying Image Filters 3. Cartoonizing an Image 4. Detecting and Tracking Different Body Parts 5. Extracting Features from an Image 6. Creating a Panoramic Image 7. Seam Carving 8. Detecting Shapes and Segmenting an Image 9. Object Tracking 10. Object Recognition 11. Stereo Vision and 3D Reconstruction 12. Augmented Reality Index

Feature based tracking


Feature based tracking refers to tracking individual feature points across successive frames in the video. We use a technique called optical flow to track these features. Optical flow is one of the most popular techniques in computer vision. We choose a bunch of feature points and track them through the video stream.

When we detect the feature points, we compute the displacement vectors and show the motion of those keypoints between consecutive frames. These vectors are called motion vectors. There are many ways to do this, but the Lucas-Kanade method is perhaps the most popular of all these techniques. You can refer to their original paper at http://cseweb.ucsd.edu/classes/sp02/cse252/lucaskanade81.pdf. We start the process by extracting the feature points. For each feature point, we create 3x3 patches with the feature point in the center. The assumption here is that all the points within each patch will have a similar motion. We can adjust the size of this window...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image