Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Deep Learning

You're reading from   Python Deep Learning Understand how deep neural networks work and apply them to real-world tasks

Arrow left icon
Product type Paperback
Published in Nov 2023
Publisher Packt
ISBN-13 9781837638505
Length 362 pages
Edition 3rd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Ivan Vasilev Ivan Vasilev
Author Profile Icon Ivan Vasilev
Ivan Vasilev
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Part 1:Introduction to Neural Networks
2. Chapter 1: Machine Learning – an Introduction FREE CHAPTER 3. Chapter 2: Neural Networks 4. Chapter 3: Deep Learning Fundamentals 5. Part 2: Deep Neural Networks for Computer Vision
6. Chapter 4: Computer Vision with Convolutional Networks 7. Chapter 5: Advanced Computer Vision Applications 8. Part 3: Natural Language Processing and Transformers
9. Chapter 6: Natural Language Processing and Recurrent Neural Networks 10. Chapter 7: The Attention Mechanism and Transformers 11. Chapter 8: Exploring Large Language Models in Depth 12. Chapter 9: Advanced Applications of Large Language Models 13. Part 4: Developing and Deploying Deep Neural Networks
14. Chapter 10: Machine Learning Operations (MLOps) 15. Index 16. Other Books You May Enjoy

The math of NNs

In the following few sections, we’ll discuss the mathematical principles of NNs. This way, we’ll be able to explain NNs through these very principles in a fundamental and structured way.

Linear algebra

Linear algebra deals with objects such as vectors and matrices, linear transformations, and linear equations such as <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:msub><mml:mrow><mml:mi>a</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msub><mml:mo>+</mml:mo><mml:msub><mml:mrow><mml:mi>a</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub><mml:mo>+</mml:mo><mml:mo>…</mml:mo><mml:mo>+</mml:mo><mml:msub><mml:mrow><mml:mi>a</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub><mml:mo>+</mml:mo><mml:mi>b</mml:mi><mml:mo>=</mml:mo><mml:mn>0</mml:mn></mml:math>.

Linear algebra identifies the following mathematical objects:

  • Scalar: A single number.
  • Vector: A one-dimensional array of numbers (also known as components or scalars), where each element has an index. We can denote vectors either with a superscript arrow (<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mover><mi>x</mi><mo stretchy="true">→</mo></mover></mrow></math>) or in bold (x), but we’ll mostly use the bold notation throughout the book. The following is an example of a vector:

<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math" display="block"><mml:mi mathvariant="bold">x</mml:mi><mml:mo>=</mml:mo><mml:mover accent="true"><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mo>→</mml:mo></mml:mover><mml:mo>=</mml:mo><mml:mfenced open="[" close="]" separators="|"><mml:mrow><mml:msub><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub><mml:mo>…</mml:mo><mml:msub><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:mfenced></mml:math>

We can represent a n-dimensional vector as the coordinates of a point in an n-dimensional Euclidean space, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msup></mml:math>. Think of Euclidean space as a coordinate system – the vector starts at the center of that system, and each of the...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image