Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Analytics for the Internet of Things (IoT)
Analytics for the Internet of Things (IoT)

Analytics for the Internet of Things (IoT): Intelligent analytics for your intelligent devices

eBook
€20.98 €29.99
Paperback
€36.99
Subscription
Free Trial
Renews at €18.99p/m

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Shipping Address

Billing Address

Shipping Methods
Table of content icon View table of contents Preview book icon Preview Book

Analytics for the Internet of Things (IoT)

Defining IoT Analytics and Challenges

In this chapter, we will discuss some concepts and challenges associated with analytics on Internet of Things (IoT) data. We will cover the following topics:

  • The analytics maturity model
  • Defining the IoT
  • What is different about IoT data?
    • Data volume
    • Problems with time
    • Problems with space
    • Data quality
    • Analytics challenges
  • Concerns with finding business value

The situation

The tense white-yellow of the fluorescent ceiling lights press down on you while you sit in your cubicle and stare at the monitors on your desk. You sense it is now night outside but can't see over the fabric walls to know for sure. You stare at the long list of filenames on one screen and the plain text rows of opaque sensor data on the other screen.

Your boss had just left to angrily brood somewhere in the office, and you are not sure where. He had been glowering over your shoulder.

"We spent $20 million in telecommunication and consulting fees last year just to get this data! The hardware costs $20 per unit. We've been getting data, and it has been piling up costing us $10,000 a month. There are 20 TB of files - that's big data, isn't it? And we can't seem to do anything with it?"he had said.

"This is ridiculous!," he continued, "It was supposed to generate $100 million in new revenue. Where is our first dollar? Why can't you do anything with it? I have five consultants a week calling me to tell me they can handle it- they'll even automate it. Maybe we should just pick one and hope they aren't selling us snake oil."

You know he does not really blame you. You were a whiz with Excel and knew how to query databases. A lot of analytics requests went to you. When the CEO decided the company needed a big data guy, they hired a VP out of Silicon Valley. But the new VP ended up taking a position with a different Silicon Valley company the day before he was supposed to start at your company.

You were hastily moved into the new analytics group. A group of one - you. It was to be a temporary shift until another VP was found. That was six months ago. The company is freezing funds for outside training and revenues are looking tight. So, no training for you.

Although many know the terms, no one in the company actually understands what Hadoop is or how to even start using this thing called machine learning. But others more and more seem to expect you to not only know it but already be doing it.

Executives have been reading articles in HBR and Forbes about the huge potential of the IoT combined with Artificial Intelligence or AI. They feel like the company will be left behind, and soon, if it does not have its own IoT big data solution incorporating AI. Your boss is feeling the pressure. Executives have several ideas for him where AI can be used. They seem to think that getting the idea is the hard part, implementation should be easy. Your boss is worried about his job and it rolls downhill to you.

Your screen on the left looks like this:

The list goes on and on for several pages. You have been able to combine several files and do some pivot tables and charting in Excel. But it takes a lot of your time, and you can only realistically handle a month or two worth of data. The questions are coming in faster than your ability to answer them. You and your boss have been talking about bringing in temps to do the work–they don't really need to understand it, just follow the steps that you outline for them.

Your screen on the right looks like this:

Your IT department has been consolidating lots of little files into several very large ones. The filesystem was being overloaded by the number of files, so the solution was to consolidate. Unfortunately, for you, many files are now too large to open in Excel, which limits what you can do with them. You end up doing more analytics on recent data simply because it is much easier (the files are still small).

Looking at the data rows, it is not obvious what you can do with it beyond sums and averages. The files are too big to do a VLOOKUP in Excel against something like your production records - which is stored in files often too big to even open in Excel.

At this point, you can't begin to think how you would apply Machine Learning to this data. You are not quite sure what it even means. You know the data is difficult to manipulate for anything beyond recent datasets. Surely, long periods of time would be needed to extract value out of it.

You hear a cough from behind you. Your boss is back.

He says quietly and stiffly, "I'm sorry. We're going to have to hire a consultant to take this over. I know how hard you've been working. You've done some amazing things considering the limitations, and nobody appreciates that enough. But I have to show results. It will probably take a month or two to fully bring someone on board. In the meantime, just keep at it–maybe we can make a breakthrough before then."

Your heart sinks. You are convinced there is huge value in the connected device data. You feel like you could make a career out of IoT analytics if you could just figure out how to get there. But you are not a quitter.

You decide you will not go down without a fight, you will find a way.

Defining IoT analytics

In order to understand IoT analytics, it is helpful to separate it out and define both analytics and the IoT. This will help frame the discussion for the rest of the book.

Defining analytics

If you ask a hundred people to define analytics, you are likely to get a hundred different answers. Each person tends to have his or her own definition in mind that can range from static reports to advanced deep learning expert systems. All tend to call efforts in the wide ranging territory analytics without much further explanation.

We will take a fairly broad definition in this book as we are covering quite a bit of territory. In their best selling book Competing on Analytics, Tom Davenport and Jeanne Harris created a scale, which they called Analytics Maturity. Companies progress to higher levels in the scale as their use of analytics matures, and they begin to compete with other companies by leveraging it.

When we use the word analytics, we will mean using techniques that fall in the range from query/drill down to optimization as shown in the following chart from Competing on Analytics:

We will also take a slightly different philosophy. Unlike the notion of a company progressing through each level to get to the peak of maturity at the upper right with optimization, we will strive to reach success at all levels in parallel.

The idea of a company not being analytically mature unless it is actively employing optimization models at every turn can be dangerous. This puts pressure on a company to focus time and resources where there may not be a return on investment (ROI) for them. Since resources are always limited, this could also cause them to under-invest in projects in other areas that have a higher ROI.

The reason for the lack of ROI is often that a company simply does not have the right data to take full advantage of the more advanced techniques. This could be no fault of their own as the signal in the noise may be just too weak to tease out. This could stem from the state of technology, not yet at the point where the key predictive data can even be monitored. Or even if this is possible, it may be far too expensive to justify capturing it. We will talk about the limitations of available data quite a bit in this book. The goal will always be to maximize ROI at all levels of the maturity model.

We will also take the view that analytics maturity is about having the capability and knowing how to enable the full scale. It is not about what you are doing. It is about what you are capable of doing in order to maximize your sum total ROI across the full scale. Each level can be exploited if an opportunity is spotted. And we want there to be fertile ground for opportunities across the full scale. More about this will be covered throughout the book.

Defining the Internet of Things

Sensors have been tracking data for decades at manufacturing plants, retail stores, and remote oil and gas equipment. Why all of sudden is there this IoT hype all over the media?

The dramatic decrease in sensor costs, bandwidth costs, the spread of cellular coverage, and the rise of cloud computing all combine to create fertile conditions to easily connect devices over the internet. For example, as shown in the following graph, Goldman Sachs predicts an average sensor cost in 2020 of under $0.40 USD, 30% of what it was in 2004. Whether all these devices should be connected or not is hotly debated:

Data source: Goldman Sachs, BI estimates

The definitions of IoT seem to vary quite a bit; some include machine sensors only, others include RFID tags and smartphones.

We will use this definition from Forrest Stroud on Webopedia:

The IoT refers to the ever-growing network of physical objects that feature an IP address for the internet connectivity and the communication that occurs between these objects and other internet-enabled devices and systems.

Or to get even more basic: stuff that talks to other stuff over the internet without requiring you to do anything. This clears it up, right?

Even the number of things projected to be connected by 2020 varies widely. Some sources project 20.8 billion devices, others project up to 50 billion - over twice the amount.

For our purposes, we are more concerned with how to analyze the data generated than we are about the scope of devices that should be considered part of the IoT. If something sends data remotely by way of the internet, it is fair game for us, especially if it is machine-generated on one end and machine-consumed on the other.

We are more concerned with how to extract value from the data and adapt to circumstances inherent to it. IoT is not really new, as elements of it have been developing for decades. Remote detection of oil well spills was happening in the 1970s. GPS-based vehicle telematics has been around for 20 years. IoT is also not a separate market; it blends into current products and processes. Although much of the media reports on it as if it is a different animal (perhaps even the author of this book - guilty as charged?), you should not think of it this way.

The concept of constrained

The term constrained is an important concept in understanding IoT devices, data, and impacts on analytics. It refers to the limited battery power, bandwidth, and hardware capability that has to be considered in the design of IoT devices. For many IoT use cases, one or more of these has to be balanced with the need to record useful data.

IoT analytics challenges

There are some special challenges that come along with IoT data. The data was created by devices operating remotely, sometimes in widely varying environmental conditions that can change from day to day. The devices are often distributed widely geographically.

The data is communicated over long distances, often across different networking technologies. It is very common for data to first transmit across a wireless network, then through a type of gateway device to be sent over the public internet–which itself includes multiple different types of networking technology working together.

The data volume

A company can easily have thousands to millions of IoT devices with several sensors on each unit, each sensor reporting values on a regular basis. The inflow of data can grow quite large very quickly. Since IoT devices send data on an ongoing basis, the volume of data in total can increase much faster than many companies are used to.

To demonstrate how this can happen, imagine a company that manufactures small monitoring devices. It produces 12,000 devices a year, starting in 2010 when the product was launched. Each one is tested at the end of assembly and the values reported by the sensors on the device are kept for analysis for five years. The data growth looks like the following image:

A chart showing data storage needs for production snapshot of 200 KB and 1,000 units per month. Five years of production data is kept

Now, imagine the device also had internet connectivity to track sensor values, and each one remains connected for two years. Since the data inflow continues well after the devices are built, data growth is exponential until it stabilizes when older devices stop reporting values. This looks more like the blue area in the following chart:

Chart shows the addition of IoT data at 0.5 KB per message, 10 messages per day. Devices are connected for two years from production

In order to illustrate how large this can get, consider the following example. If you capture 10 messages per day and the message size is half of a full production snapshot, by 2017, data storage requirements would be over 1,500 times higher than production-only data.

For many companies, this introduces some problems. The database software, storage infrastructure, and available computing horsepower is not typically intended to handle this kind of growth. The licensing agreements with software vendors tends to be tied to the number of servers and CPU cores. Storage is handled by standard backup planning and retention policies.

The data volume rapidly leads to computing and storage requirements well beyond what can be held by a single server. It gets cost prohibitive very quickly under traditional architectures to distribute it across hundreds or thousands of servers. To do the best analytics, you need lots of historical data, and since you are unlikely to know ahead of time which data is most predictive, you have to keep as much as you can on hand.

With large-scale data, computing horsepower requirements for analytics are not very predictable and change dramatically depending on the question being asked. Analytic needs are very elastic. Traditional server planning ratchets up on premise resources with the anticipated number of servers needed to meet peak needs determined in advance. Doubling compute power in a short amount of time, if even possible, is very expensive.

IoT data volumes and computing resource requirements can quickly outpace all the other company data needs combined.

Problems with time

The only reason for time is so that everything doesn't happen at once.
– Albert Einstein

Time is very tightly tied to geographical position and the date on the calendar. The international standard way of tracking a common time is using Coordinated Universal Time (UTC). UTC is geographically tied to 00 longitude, which passes through Greenwich, England, in the UK. Although it is tied to the location, it is actually not the same as Greenwich Mean Time (GMT). GMT is a time zone, while UTC is a time standard. UTC does not observe Daylight Savings Time (DST):

Standard time zones of the World. Source: CIA Factbook

When data used for analytics is recorded at headquarters or a manufacturing plant, everything happens at the same place and time zone. IoT devices are spread out across the globe. Events that happen at the absolute same time do not happen at the same local time. How time is recorded affects the integrity of the resulting analytics.

When IoT devices communicate sensor data, time may be captured using the local time. It can dramatically affect analytics results if it is not clear whether local time or UTC was recorded. For example, consider an analyst working at a company that makes parking spot occupancy detection sensors. She is tasked with creating predictive models to estimate future parking lot fill rates. The time of day is likely to be a very predictive data point. It makes a big difference to her on how this time is recorded. Even determining if it is night or day at the sensor location will be difficult.

This may not be apparent to the engineer creating the device. His task is to design a device that determines if the spot is open or not. He may not appreciate the importance of writing code that captures a time value that can be aggregated across multiple time zones and locations.

There can also be issues with clock synchronization. Devices set their internal clock to be in sync with the time standard being used. If it is local time, it could be using the wrong time zone due to a configuration error. It could also get out of sync due to a communication problem with the time standard source.

If local time is being used, daylight savings time can cause problems. How will the events that happen between 1 a.m. and 2 a.m. on the day autumn daylight savings is adjusted be recorded since that hour happens twice? Laws that determine which days mark daylight savings time can change, as they did in Turkey when DST was scrapped in September 2016. If the device is locked into a set date range at the time of manufacture, the time would be incorrect for several days out of the year after the DST dates change.

How daylight savings time changes is different from country to country. In the United States, daylight savings time is changed at 02:00 local time in each time zone. In the European Union, it is coordinated so that all EU countries change at 01:00 GMT for all time zones at once. This keeps time zones always an hour apart at the expense of it changing at different local times for each time zone.

In early 2008, Central Brazil was one, two, or three hours ahead of eastern U.S., depending on the date
Source: Wikipedia commons

When time is recorded for an event, such as a parking spot being vacated, it is essential for analytics that the time is as close to the actual occurrence as possible. In practice, though, the time available for analytics can be the time the event occurred, the time the IoT device sent the data, the time the data was received, or the time the data was added to your data warehouse.

Problems with space

IoT devices are located in multiple geographic locations. Different areas of the world have different environmental conditions. Temperature variations can affect sensor accuracy. You could have less accurate readings in Calgary, Canada than in Cancun, Mexico, if cold impacts your device.

Elevation can affect equipment such as diesel engines. If location and elevation is not taken into consideration, you may falsely conclude from IoT sensor readings that a Denver-based fleet of delivery trucks is poorly managing fuel economy compared to a fleet in Indiana. Lots of mountain roads can burn up some fuel!

US elevation profile from LA to NYC. Source: reddit.com

Remote locations may have weaker network access. The higher data loss could cause data values for those locations to be underrepresented in the resulting analytics.

Many IoT devices are solar powered. The available battery charge can affect the frequency of data reporting. A device in Portland, Oregon, where it is often cloudy and rainy will be more impacted than the same device in Phoenix, Arizona, where it is mostly sunny.

There are also political considerations related to the location of the IoT device. Privacy laws in Europe affect how the data from devices can be stored and what type of analytics is acceptable. You may be required to anonymize the data from certain countries, which can affect what you can do with analytics.

Data quality

Constrained devices means lossy networks. For analytics, it often results in either missing or inconsistent data. The missing data is often not random. As mentioned previously, it can be impacted by the location. Devices run on a software, called firmware, which may not be consistent across locations. This could mean differences in reporting frequency or formatting of values. It can result in lost or mangled data.

Data messages from IoT devices often require the destination to know how to interpret the message being sent. Software bugs can lead to garbled messages and data records.

Messages lost in translation or never sent due to dead batteries result in missing values. The conservation of power often means not all values available on the device are sent at the same time. The resulting datasets often have missing values, as the device sends some values consistently every time it reports and sends some other values less frequently.

Analytics challenges

Analytics often requires deciding on whether to fill in or ignore the missing values. Either choice may lead to a dataset that is not a representative of reality.

As an example of how this can affect results, consider the case of inaccurate political poll results in recent years. Many experts believe it is now in near crisis due to the shift of much of the world to mobile numbers as their only phone number. For pollsters, it is cheaper and easier to reach people on landline numbers. This can lead to the over representation of people with landlines. These people tend to be both older and wealthier than mobile-only respondents.

The response rate has also dropped from near 80% in the 1970s to about 8% (if you are lucky) today. This makes it more difficult (and expensive) to obtain a representative sample leading to many embarrassingly wrong poll predictions.

There can also be outside influences, such as environment conditions, that are not captured in the data. Winter storms can lead to power failures affecting devices that are able to report back data. You may end up drawing conclusions based on a non-representative sample of data without realizing it. This can affect the results of IoT analytics – and it will not be clear why.

Since connectivity is a new thing for many devices, there is also often a lack of historical data to base predictive models on. This can limit the type of analytics that can be done with the data.

It can also lead to a recency bias in datasets, as newer products are over represented in the data simply because a higher percentage are now a part of the IoT.

This leads us to the author's number one rule in IoT analytics:

Never trust data you don't know.

Treat it like a stranger offering you candy.

Business value concerns

Many companies are struggling to find value with IoT data. The costs to store, process, and analyze IoT data can grow quickly. With future financial returns uncertain, some companies are questioning if it is worth the investment.

According to McKinsey & Company, a consulting agency, most IoT data is not used. From their research, less than 1% of data generated by an oil platform was used for decision-making purposes.

Finding value with IoT analytics is often like finding a diamond in a mountain of rubble. We can accept that 1% of the data has value, but which 1% is it? This can vary depending on the question. One man's worthless granite is another man's priceless diamond.

The business value challenge is how to keep costs low while increasing the ability to create superior financial returns. Analytics is a great way to get there.

Summary

In this chapter, we defined, for the purposes of this book, what constitutes the IoT. We also defined what is meant by the term analytics when we use it here. We discussed special challenges that come with IoT data from volume of data to issues with time and space that are not normally a concern with internal company datasets. You should have a good idea of the scope of the book and the challenges that you will learn to overcome in the later chapters.

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • •Make better business decisions and acquire greater control of your IoT infrastructure
  • •Learn techniques to solve unique problems associated with IoT and examine and analyze data from your IoT devices
  • •Uncover the business potential generated by data from IoT devices and bring down business costs

Description

We start with the perplexing task of extracting value from huge amounts of barely intelligible data. The data takes a convoluted route just to be on the servers for analysis, but insights can emerge through visualization and statistical modeling techniques. You will learn to extract value from IoT big data using multiple analytic techniques. Next we review how IoT devices generate data and how the information travels over networks. You’ll get to know strategies to collect and store the data to optimize the potential for analytics, and strategies to handle data quality concerns. Cloud resources are a great match for IoT analytics, so Amazon Web Services, Microsoft Azure, and PTC ThingWorx are reviewed in detail next. Geospatial analytics is then introduced as a way to leverage location information. Combining IoT data with environmental data is also discussed as a way to enhance predictive capability. We’ll also review the economics of IoT analytics and you’ll discover ways to optimize business value. By the end of the book, you’ll know how to handle scale for both data storage and analytics, how Apache Spark can be leveraged to handle scalability, and how R and Python can be used for analytic modeling.

Who is this book for?

This book targets developers, IoT professionals, and those in the field of data science who are trying to solve business problems through IoT devices and would like to analyze IoT data. IoT enthusiasts, managers, and entrepreneurs who would like to make the most of IoT will find this equally useful. A prior knowledge of IoT would be helpful but is not necessary. Some prior programming experience would be useful

What you will learn

  • •Overcome the challenges IoT data brings to analytics
  • •Understand the variety of transmission protocols for IoT along with their strengths and weaknesses
  • •Learn how data flows from the IoT device to the final data set
  • •Develop techniques to wring value from IoT data
  • •Apply geospatial analytics to IoT data
  • •Use machine learning as a predictive method on IoT data
  • •Implement best strategies to get the most from IoT analytics
  • •Master the economics of IoT analytics in order to optimize business value
Estimated delivery fee Deliver to Germany

Premium delivery 7 - 10 business days

€17.95
(Includes tracking information)

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Jul 24, 2017
Length: 378 pages
Edition : 1st
Language : English
ISBN-13 : 9781787120730
Category :
Languages :

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Shipping Address

Billing Address

Shipping Methods
Estimated delivery fee Deliver to Germany

Premium delivery 7 - 10 business days

€17.95
(Includes tracking information)

Product Details

Publication date : Jul 24, 2017
Length: 378 pages
Edition : 1st
Language : English
ISBN-13 : 9781787120730
Category :
Languages :

Packt Subscriptions

See our plans and pricing
Modal Close icon
€18.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
€189.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts
€264.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total 102.97
Smart Internet of Things Projects
€32.99
Intelligent IoT Projects in 7 Days
€32.99
Analytics for the Internet of Things (IoT)
€36.99
Total 102.97 Stars icon
Banner background image

Table of Contents

13 Chapters
Defining IoT Analytics and Challenges Chevron down icon Chevron up icon
IoT Devices and Networking Protocols Chevron down icon Chevron up icon
IoT Analytics for the Cloud Chevron down icon Chevron up icon
Creating an AWS Cloud Analytics Environment Chevron down icon Chevron up icon
Collecting All That Data - Strategies and Techniques Chevron down icon Chevron up icon
Getting to Know Your Data - Exploring IoT Data Chevron down icon Chevron up icon
Decorating Your Data - Adding External Datasets to Innovate Chevron down icon Chevron up icon
Communicating with Others - Visualization and Dashboarding Chevron down icon Chevron up icon
Applying Geospatial Analytics to IoT Data Chevron down icon Chevron up icon
Data Science for IoT Analytics Chevron down icon Chevron up icon
Strategies to Organize Data for Analytics Chevron down icon Chevron up icon
The Economics of IoT Analytics Chevron down icon Chevron up icon
Bringing It All Together Chevron down icon Chevron up icon

Customer reviews

Top Reviews
Rating distribution
Full star icon Full star icon Full star icon Full star icon Half star icon 4.7
(6 Ratings)
5 star 83.3%
4 star 0%
3 star 16.7%
2 star 0%
1 star 0%
Filter icon Filter
Top Reviews

Filter reviews by




Jesse H. Scott Sep 26, 2017
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Well written and thorough coverage of technology, hardware, software and how it is used. Good introductory material.
Amazon Verified review Amazon
f. e. nar Oct 13, 2017
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Good book to expand your view with supplemental tools (not clear & useful how-to(s) btw), methodologies and even external datasets to get more out of your IoT solution/product, plus a happy ending career of a data analyst :-)
Amazon Verified review Amazon
Tony Dec 19, 2017
Full star icon Full star icon Full star icon Full star icon Full star icon 5
This is a great book. It covers such a wide variety of topics in a clear and concise fashion. The author could have easily got lost in the detail given they were trying to cover a lot of ground - devices, networking, cloud, big data, visualisation, data science, deep learning, economics - but they managed to keep it at level that was useful and insightful. Being myself a veteran in the Analytics field, I could see how he managed to bring some very complex topics up and make the overall concept simple to understand. Some of his explanations around Big Data, cloud and analytics could be used independently of whether someone is interested in IoT or not.He even used a lot of humour throughout the book which is not very common amongst textbooks these days. Although I wish it was.If people want to get a high level overview of the spectrum from devices to analytics, I highly recommend this book. It is enough then to be the springboard into other areas of your choosing if you want more detail.I got the kindle version and it was well formatted and easy to read and came with a separate attachment with the images.
Amazon Verified review Amazon
Mugdha Hota Oct 18, 2018
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Good
Amazon Verified review Amazon
Carlos Monge Perry Feb 21, 2019
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Good book, clear and academic oriented.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is the delivery time and cost of print book? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela
What is custom duty/charge? Chevron down icon Chevron up icon

Customs duty are charges levied on goods when they cross international borders. It is a tax that is imposed on imported goods. These duties are charged by special authorities and bodies created by local governments and are meant to protect local industries, economies, and businesses.

Do I have to pay customs charges for the print book order? Chevron down icon Chevron up icon

The orders shipped to the countries that are listed under EU27 will not bear custom charges. They are paid by Packt as part of the order.

List of EU27 countries: www.gov.uk/eu-eea:

A custom duty or localized taxes may be applicable on the shipment and would be charged by the recipient country outside of the EU27 which should be paid by the customer and these duties are not included in the shipping charges been charged on the order.

How do I know my custom duty charges? Chevron down icon Chevron up icon

The amount of duty payable varies greatly depending on the imported goods, the country of origin and several other factors like the total invoice amount or dimensions like weight, and other such criteria applicable in your country.

For example:

  • If you live in Mexico, and the declared value of your ordered items is over $ 50, for you to receive a package, you will have to pay additional import tax of 19% which will be $ 9.50 to the courier service.
  • Whereas if you live in Turkey, and the declared value of your ordered items is over € 22, for you to receive a package, you will have to pay additional import tax of 18% which will be € 3.96 to the courier service.
How can I cancel my order? Chevron down icon Chevron up icon

Cancellation Policy for Published Printed Books:

You can cancel any order within 1 hour of placing the order. Simply contact [email protected] with your order details or payment transaction id. If your order has already started the shipment process, we will do our best to stop it. However, if it is already on the way to you then when you receive it, you can contact us at [email protected] using the returns and refund process.

Please understand that Packt Publishing cannot provide refunds or cancel any order except for the cases described in our Return Policy (i.e. Packt Publishing agrees to replace your printed book because it arrives damaged or material defect in book), Packt Publishing will not accept returns.

What is your returns and refunds policy? Chevron down icon Chevron up icon

Return Policy:

We want you to be happy with your purchase from Packtpub.com. We will not hassle you with returning print books to us. If the print book you receive from us is incorrect, damaged, doesn't work or is unacceptably late, please contact Customer Relations Team on [email protected] with the order number and issue details as explained below:

  1. If you ordered (eBook, Video or Print Book) incorrectly or accidentally, please contact Customer Relations Team on [email protected] within one hour of placing the order and we will replace/refund you the item cost.
  2. Sadly, if your eBook or Video file is faulty or a fault occurs during the eBook or Video being made available to you, i.e. during download then you should contact Customer Relations Team within 14 days of purchase on [email protected] who will be able to resolve this issue for you.
  3. You will have a choice of replacement or refund of the problem items.(damaged, defective or incorrect)
  4. Once Customer Care Team confirms that you will be refunded, you should receive the refund within 10 to 12 working days.
  5. If you are only requesting a refund of one book from a multiple order, then we will refund you the appropriate single item.
  6. Where the items were shipped under a free shipping offer, there will be no shipping costs to refund.

On the off chance your printed book arrives damaged, with book material defect, contact our Customer Relation Team on [email protected] within 14 days of receipt of the book with appropriate evidence of damage and we will work with you to secure a replacement copy, if necessary. Please note that each printed book you order from us is individually made by Packt's professional book-printing partner which is on a print-on-demand basis.

What tax is charged? Chevron down icon Chevron up icon

Currently, no tax is charged on the purchase of any print book (subject to change based on the laws and regulations). A localized VAT fee is charged only to our European and UK customers on eBooks, Video and subscriptions that they buy. GST is charged to Indian customers for eBooks and video purchases.

What payment methods can I use? Chevron down icon Chevron up icon

You can pay with the following card types:

  1. Visa Debit
  2. Visa Credit
  3. MasterCard
  4. PayPal
What is the delivery time and cost of print books? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela