In this chapter, we looked at using probabilistic linear models to predict a qualitative response with two generalized linear model methods: logistic regression, and multivariate adaptive regression splines. We explored using the weight of information and information value as a technique to do univariate feature selection. We covered the concept of finding the proper probability threshold to minimize classification error. Additionally, we began the process of using various performance metrics such as AUC, log-loss, and ROC charts to explore model selection visually and statistically. These metrics proved to be more informative than just pure accuracy, especially in a situation where class labels are highly imbalanced. In the next chapter, we'll cover regularization methods for feature selection, and how it can be used in training your algorithms. We'll see how...
Germany
Slovakia
Canada
Brazil
Singapore
Hungary
Philippines
Mexico
Thailand
Ukraine
Luxembourg
Estonia
Lithuania
Norway
Chile
United States
Great Britain
India
Spain
South Korea
Ecuador
Colombia
Taiwan
Switzerland
Indonesia
Cyprus
Denmark
Finland
Poland
Malta
Czechia
New Zealand
Austria
Turkey
France
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Malaysia
South Africa
Netherlands
Bulgaria
Latvia
Australia
Japan
Russia