Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Scala for Data Science

You're reading from   Scala for Data Science Leverage the power of Scala with different tools to build scalable, robust data science applications

Arrow left icon
Product type Paperback
Published in Jan 2016
Publisher
ISBN-13 9781785281372
Length 416 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Pascal Bugnion Pascal Bugnion
Author Profile Icon Pascal Bugnion
Pascal Bugnion
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Scala and Data Science FREE CHAPTER 2. Manipulating Data with Breeze 3. Plotting with breeze-viz 4. Parallel Collections and Futures 5. Scala and SQL through JDBC 6. Slick – A Functional Interface for SQL 7. Web APIs 8. Scala and MongoDB 9. Concurrency with Akka 10. Distributed Batch Processing with Spark 11. Spark SQL and DataFrames 12. Distributed Machine Learning with MLlib 13. Web APIs with Play 14. Visualization with D3 and the Play Framework A. Pattern Matching and Extractors Index

Preface

Data science is fashionable. Data science startups are sprouting across the globe and established companies are scrambling to assemble data science teams. The ability to analyze large datasets is also becoming increasingly important in the academic and research world.

Why this explosion in demand for data scientists? Our view is that the emergence of data science can be viewed as the serendipitous collusion of several interlinked factors. The first is data availability. Over the last fifteen years, the amount of data collected by companies has exploded. In the world of research, cheap gene sequencing techniques have drastically increased the amount of genomic data available. Social and professional networking sites have built huge graphs interlinking a significant fraction of the people living on the planet. At the same time, the development of the World Wide Web makes accessing this wealth of data possible from almost anywhere in the world.

The increased availability of data has resulted in an increase in data awareness. It is no longer acceptable for decision makers to trust their experience and "gut feeling" alone. Increasingly, one expects business decisions to be driven by data.

Finally, the tools for efficiently making sense of and extracting insights from huge data sets are starting to mature: one doesn't need to be an expert in distributed computing to analyze a large data set any more. Apache Spark, for instance, greatly eases writing distributed data analysis applications. The explosion of cloud infrastructure facilitates scaling computing needs to cope with variable data amounts.

Scala is a popular language for data science. By emphasizing immutability and functional constructs, Scala lends itself well to the construction of robust libraries for concurrency and big data analysis. A rich ecosystem of tools for data science has therefore developed around Scala, including libraries for accessing SQL and NoSQL databases, frameworks for building distributed applications like Apache Spark and libraries for linear algebra and numerical algorithms. We will explore this rich and growing ecosystem in the fourteen chapters of this book.

lock icon The rest of the chapter is locked
Next Section arrow right
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image