Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Deep Learning with Hadoop
Deep Learning with Hadoop

Deep Learning with Hadoop: Distributed Deep Learning with Large-Scale Data

eBook
€17.99 €26.99
Paperback
€32.99
Subscription
Free Trial
Renews at €18.99p/m

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Shipping Address

Billing Address

Shipping Methods
Table of content icon View table of contents Preview book icon Preview Book

Deep Learning with Hadoop

Chapter 2.  Distributed Deep Learning for Large-Scale Data

 

"In God we trust, all others must bring data"

 
 --W. Edwards Deming

In this exponentially growing digital world, big data and deep learning are the two hottest technical trends. Deep learning and big data are two interrelated topics in the world of data science, and in terms of technological growth, both are critically interconnected and equally significant.

Digital data and cloud storage follow a generic law, termed as Moore's law [50], which roughly states that the world's data are doubling every two years; however, the cost of storing that data decreases at approximately the same rate. This profusion of data generates more features and verities, hence, to extract all the valuable information out of it, better deep learning models should be built.

This voluminous availability of data helps to bring huge opportunities for multiple sectors. Moreover, big data, with its analytic part...

Deep learning for massive amounts of data

In this Exa-Byte scale era, the data are increasing at an exponential rate. This growth of data are analyzed by many organizations and researchers in various ways, and also for so many different purposes. According to the survey of International Data Corporation (IDC), the Internet is processing approximately 2 Petabytes of data every day [51]. In 2006, the size of digital data was around 0.18 ZB, whereas this volume has increased to 1.8 ZB in 2011. Up to 2015, it was expected to reach up to 10 ZB in size, and by 2020, its volume in the world will reach up to approximately 30 ZB to 35 ZB. The timeline of this data mountain is shown in Figure 2.1. These immense amounts of data in the digital world are formally termed as big data.

 

"The world of Big Data is on fire"

 
 --The Economist, Sept 2011

Deep learning for massive amounts of data

Figure 2.1: Figure shows the increasing trend of data for a time span of around 20 years

Facebook has almost 21 PB in 200M objects...

Challenges of deep learning for big data

The potential of big data is certainly noteworthy. However, to fully extract valuable information at this scale, we would require new innovations and promising algorithms to address many of these related technical problems. For example, to train the models, most of the traditional machine learning algorithms load the data in memory. But with a massive amount of data, this approach will surely not be feasible, as the system might run out of memory. To overcome all these gritty problems, and get the most out of the big data with the deep learning techniques, we will require brain storming.

Although, as discussed in the earlier section, large-scale deep learning has achieved many accomplishments in the past decade, this field is still in a growing phase. Big data is constantly raising limitations with its 4Vs. Therefore, to tackle all of those, many more advancements in the models need to take place.

Challenges of deep learning due to massive...

Distributed deep learning and Hadoop

From the earlier sections of this chapter, we already have enough insights on why and how the relationship of deep learning and big data can bring major changes to the research community. Also, a centralized system is not going to help this relationship substantially with the course of time. Hence, distribution of the deep learning network across multiple servers has become the primary goal of the current deep learning practitioners. However, dealing with big data in a distributed environment is always associated with several challenges. Most of those are explained in-depth in the previous section. These include dealing with higher dimensional data, data with too many features, amount of memory available to store, processing the massive Big datasets, and so on. Moreover, Big datasets have a high computational resource demand on CPU and memory time. So, the reduction of processing time has become an extremely significant criterion. The following are the...

Deeplearning4j - an open source distributed framework for deep learning

Deeplearning4j (DL4J) [82] is an open source deep learning framework which is written for JVM, and mainly used for commercial grade. The framework is written entirely in Java, and thus, the name '4j' is included. Because of its use with Java, Deeplearning4j has started to earn popularity with a much wider audience and range of practitioners.

This framework is basically composed of a distributed deep learning library that is integrated with Hadoop and Spark. With the help of Hadoop and Spark, we can very easily distribute the model and Big datasets, and run multiple GPUs and CPUs to perform parallel operations. Deeplearning4j has primarily shown substantial success in performing pattern recognition in images, sound, text, time series data, and so on. Apart from that, it can also be applied for various customer use cases such as facial recognition, fraud detection, business analytics, recommendation engines...

Deep learning for massive amounts of data


In this Exa-Byte scale era, the data are increasing at an exponential rate. This growth of data are analyzed by many organizations and researchers in various ways, and also for so many different purposes. According to the survey of International Data Corporation (IDC), the Internet is processing approximately 2 Petabytes of data every day [51]. In 2006, the size of digital data was around 0.18 ZB, whereas this volume has increased to 1.8 ZB in 2011. Up to 2015, it was expected to reach up to 10 ZB in size, and by 2020, its volume in the world will reach up to approximately 30 ZB to 35 ZB. The timeline of this data mountain is shown in Figure 2.1. These immense amounts of data in the digital world are formally termed as big data.

 

"The world of Big Data is on fire"

 
 --The Economist, Sept 2011

Figure 2.1: Figure shows the increasing trend of data for a time span of around 20 years

Facebook has almost 21 PB in 200M objects [52], whereas Jaguar ORNL...

Challenges of deep learning for big data


The potential of big data is certainly noteworthy. However, to fully extract valuable information at this scale, we would require new innovations and promising algorithms to address many of these related technical problems. For example, to train the models, most of the traditional machine learning algorithms load the data in memory. But with a massive amount of data, this approach will surely not be feasible, as the system might run out of memory. To overcome all these gritty problems, and get the most out of the big data with the deep learning techniques, we will require brain storming.

Although, as discussed in the earlier section, large-scale deep learning has achieved many accomplishments in the past decade, this field is still in a growing phase. Big data is constantly raising limitations with its 4Vs. Therefore, to tackle all of those, many more advancements in the models need to take place.

Challenges of deep learning due to massive volumes of...

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Get to grips with the deep learning concepts and set up Hadoop to put them to use
  • Implement and parallelize deep learning models on Hadoop’s YARN framework
  • A comprehensive tutorial to distributed deep learning with Hadoop

Description

This book will teach you how to deploy large-scale dataset in deep neural networks with Hadoop for optimal performance. Starting with understanding what deep learning is, and what the various models associated with deep neural networks are, this book will then show you how to set up the Hadoop environment for deep learning. In this book, you will also learn how to overcome the challenges that you face while implementing distributed deep learning with large-scale unstructured datasets. The book will also show you how you can implement and parallelize the widely used deep learning models such as Deep Belief Networks, Convolutional Neural Networks, Recurrent Neural Networks, Restricted Boltzmann machines and autoencoder using the popular deep learning library Deeplearning4j. Get in-depth mathematical explanations and visual representations to help you understand the design and implementations of Recurrent Neural network and Denoising Autoencoders with Deeplearning4j. To give you a more practical perspective, the book will also teach you the implementation of large-scale video processing, image processing and natural language processing on Hadoop. By the end of this book, you will know how to deploy various deep neural networks in distributed systems using Hadoop.

Who is this book for?

If you are a data scientist who wants to learn how to perform deep learning on Hadoop, this is the book for you. Knowledge of the basic machine learning concepts and some understanding of Hadoop is required to make the best use of this book.

What you will learn

  • Explore Deep Learning and various models associated with it
  • Understand the challenges of implementing distributed deep learning with Hadoop and how to overcome it
  • Implement Convolutional Neural Network (CNN) with Deeplearning4j
  • Delve into the implementation of Restricted Boltzmann machines (RBMs)
  • Understand the mathematical explanation for implementing Recurrent Neural Networks (RNNs)
  • Understand the design and implementation of Deep Belief Networks (DBN) and Deep Autoencoders using Deeplearning4j
  • Get hands on practice of deep learning and their implementation with Hadoop.
Estimated delivery fee Deliver to Denmark

Premium delivery 7 - 10 business days

€17.95
(Includes tracking information)

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Feb 20, 2017
Length: 206 pages
Edition : 1st
Language : English
ISBN-13 : 9781787124769
Vendor :
Apache
Category :
Languages :
Concepts :

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Shipping Address

Billing Address

Shipping Methods
Estimated delivery fee Deliver to Denmark

Premium delivery 7 - 10 business days

€17.95
(Includes tracking information)

Product Details

Publication date : Feb 20, 2017
Length: 206 pages
Edition : 1st
Language : English
ISBN-13 : 9781787124769
Vendor :
Apache
Category :
Languages :
Concepts :

Packt Subscriptions

See our plans and pricing
Modal Close icon
€18.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
€189.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts
€264.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total 116.97
Artificial Intelligence with Python
€41.99
Deep Learning with TensorFlow
€41.99
Deep Learning with Hadoop
€32.99
Total 116.97 Stars icon
Banner background image

Table of Contents

8 Chapters
1. Introduction to Deep Learning Chevron down icon Chevron up icon
2. Distributed Deep Learning for Large-Scale Data Chevron down icon Chevron up icon
3. Convolutional Neural Network Chevron down icon Chevron up icon
4. Recurrent Neural Network Chevron down icon Chevron up icon
5. Restricted Boltzmann Machines Chevron down icon Chevron up icon
6. Autoencoders Chevron down icon Chevron up icon
7. Miscellaneous Deep Learning Operations using Hadoop Chevron down icon Chevron up icon
1. References Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Full star icon Full star icon Full star icon Half star icon 4.8
(5 Ratings)
5 star 80%
4 star 20%
3 star 0%
2 star 0%
1 star 0%
Oleg Okun Nov 05, 2018
Full star icon Full star icon Full star icon Full star icon Full star icon 5
If you are looking for a book to learn deeplearning4j - A Java based Distributed Deep Learning framework - this is the book to read. It contains a lot of useful code to immediately start working with, which implements the main Deep Learning models in deeplearning4j: Convolutional Neural Networks, Recurrent Neural Networks, Restricted Bolzman Machines, and Autoencoders. For beginners to Deep Learning, the author explains a network architecture for each model, its strong and weak points, details of fine-tuning to pay attention to. The last chapter sketches the design of real-world applications of the models described in the previous chapters, such as distributed video decoding and intelligent web browsing.
Amazon Verified review Amazon
JAYASMITA DEB Mar 14, 2017
Full star icon Full star icon Full star icon Full star icon Full star icon 5
A great book to know about distributed deep learning and is explained in a appropriate manner.
Amazon Verified review Amazon
Amazon Customer Mar 14, 2017
Full star icon Full star icon Full star icon Full star icon Full star icon 5
I was looking for a good use case of Xanadu, a big data platform technology that I'm now commercializing, in Machine Learning.Distributed deep learning exploiting large-scale datasets that is explained in this book in detail will be one of best use cases of Xanadu,which can show Xanadu's excellent functionality in deep learning applications. This book is an excellent reference to anyone who wants toexplore the distributed deep learning for big data applications.
Amazon Verified review Amazon
shreya dey Jul 23, 2017
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Liked the book. Must read... Useful. Information overloaded!
Amazon Verified review Amazon
Amazon Customer Jan 30, 2018
Full star icon Full star icon Full star icon Full star icon Empty star icon 4
Simple and easy to understand....With useful information
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is the delivery time and cost of print book? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela
What is custom duty/charge? Chevron down icon Chevron up icon

Customs duty are charges levied on goods when they cross international borders. It is a tax that is imposed on imported goods. These duties are charged by special authorities and bodies created by local governments and are meant to protect local industries, economies, and businesses.

Do I have to pay customs charges for the print book order? Chevron down icon Chevron up icon

The orders shipped to the countries that are listed under EU27 will not bear custom charges. They are paid by Packt as part of the order.

List of EU27 countries: www.gov.uk/eu-eea:

A custom duty or localized taxes may be applicable on the shipment and would be charged by the recipient country outside of the EU27 which should be paid by the customer and these duties are not included in the shipping charges been charged on the order.

How do I know my custom duty charges? Chevron down icon Chevron up icon

The amount of duty payable varies greatly depending on the imported goods, the country of origin and several other factors like the total invoice amount or dimensions like weight, and other such criteria applicable in your country.

For example:

  • If you live in Mexico, and the declared value of your ordered items is over $ 50, for you to receive a package, you will have to pay additional import tax of 19% which will be $ 9.50 to the courier service.
  • Whereas if you live in Turkey, and the declared value of your ordered items is over € 22, for you to receive a package, you will have to pay additional import tax of 18% which will be € 3.96 to the courier service.
How can I cancel my order? Chevron down icon Chevron up icon

Cancellation Policy for Published Printed Books:

You can cancel any order within 1 hour of placing the order. Simply contact [email protected] with your order details or payment transaction id. If your order has already started the shipment process, we will do our best to stop it. However, if it is already on the way to you then when you receive it, you can contact us at [email protected] using the returns and refund process.

Please understand that Packt Publishing cannot provide refunds or cancel any order except for the cases described in our Return Policy (i.e. Packt Publishing agrees to replace your printed book because it arrives damaged or material defect in book), Packt Publishing will not accept returns.

What is your returns and refunds policy? Chevron down icon Chevron up icon

Return Policy:

We want you to be happy with your purchase from Packtpub.com. We will not hassle you with returning print books to us. If the print book you receive from us is incorrect, damaged, doesn't work or is unacceptably late, please contact Customer Relations Team on [email protected] with the order number and issue details as explained below:

  1. If you ordered (eBook, Video or Print Book) incorrectly or accidentally, please contact Customer Relations Team on [email protected] within one hour of placing the order and we will replace/refund you the item cost.
  2. Sadly, if your eBook or Video file is faulty or a fault occurs during the eBook or Video being made available to you, i.e. during download then you should contact Customer Relations Team within 14 days of purchase on [email protected] who will be able to resolve this issue for you.
  3. You will have a choice of replacement or refund of the problem items.(damaged, defective or incorrect)
  4. Once Customer Care Team confirms that you will be refunded, you should receive the refund within 10 to 12 working days.
  5. If you are only requesting a refund of one book from a multiple order, then we will refund you the appropriate single item.
  6. Where the items were shipped under a free shipping offer, there will be no shipping costs to refund.

On the off chance your printed book arrives damaged, with book material defect, contact our Customer Relation Team on [email protected] within 14 days of receipt of the book with appropriate evidence of damage and we will work with you to secure a replacement copy, if necessary. Please note that each printed book you order from us is individually made by Packt's professional book-printing partner which is on a print-on-demand basis.

What tax is charged? Chevron down icon Chevron up icon

Currently, no tax is charged on the purchase of any print book (subject to change based on the laws and regulations). A localized VAT fee is charged only to our European and UK customers on eBooks, Video and subscriptions that they buy. GST is charged to Indian customers for eBooks and video purchases.

What payment methods can I use? Chevron down icon Chevron up icon

You can pay with the following card types:

  1. Visa Debit
  2. Visa Credit
  3. MasterCard
  4. PayPal
What is the delivery time and cost of print books? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela