Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Scientific Computing with R

You're reading from   Mastering Scientific Computing with R Employ professional quantitative methods to answer scientific questions with a powerful open source data analysis environment

Arrow left icon
Product type Paperback
Published in Jan 2015
Publisher
ISBN-13 9781783555253
Length 432 pages
Edition 1st Edition
Languages
Arrow right icon
Toc

Table of Contents (12) Chapters Close

Preface 1. Programming with R 2. Statistical Methods with R FREE CHAPTER 3. Linear Models 4. Nonlinear Methods 5. Linear Algebra 6. Principal Component Analysis and the Common Factor Model 7. Structural Equation Modeling and Confirmatory Factor Analysis 8. Simulations 9. Optimization 10. Advanced Data Management Index

Preface

As an open source computing environment, R is rapidly becoming the lingua franca of the statistical computing community. R's powerful base functions, powerful statistical tools, open source nature, and avid user community have led to R having an expansive library of powerful, cutting-edge quantitative methods not yet available to users of other high-cost statistical programs.

With this book, you will learn not just about R, but how to use R to answer conceptual, scientific, and experimental questions.

Beginning with an overview of fundamental R concepts, including data types, R program flow, and basic coding techniques, you'll learn how R can be used to achieve the most commonly needed scientific data analysis tasks, including testing for statistically significant differences between groups and model relationships in data. You will also learn parametric and nonparametric techniques for both difference testing and relationship modeling.

You will delve into linear algebra and matrix operations with an emphasis not on the R syntax, but on how these operations can be used to address common computational or analytical needs. This book also covers the application of matrix operations for the purpose of finding a structure in high-dimensional data using the principal component, exploratory factor, and confirmatory factor analysis in addition to structural equation modeling. You will also master methods for simulation, learn about an advanced analytical method, and finish by going to the next level with advanced data management focused on dealing with messy and problematic datasets that serious analysts deal with daily.

By the end of this book, you will be able to undertake publication-quality data analysis in R.

lock icon The rest of the chapter is locked
Next Section arrow right
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image