Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Predictive Analytics using Rattle and Qlik Sense

You're reading from   Predictive Analytics using Rattle and Qlik Sense Create comprehensive solutions for predictive analysis using Rattle and share them with Qlik Sense

Arrow left icon
Product type Paperback
Published in Jun 2015
Publisher
ISBN-13 9781784395803
Length 242 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Ferran Garcia Pagans Ferran Garcia Pagans
Author Profile Icon Ferran Garcia Pagans
Ferran Garcia Pagans
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Getting Ready with Predictive Analytics FREE CHAPTER 2. Preparing Your Data 3. Exploring and Understanding Your Data 4. Creating Your First Qlik Sense Application 5. Clustering and Other Unsupervised Learning Methods 6. Decision Trees and Other Supervised Learning Methods 7. Model Evaluation 8. Visualizations, Data Applications, Dashboards, and Data Storytelling 9. Developing a Complete Application Index

Analytics, predictive analytics, and data visualization

In January 2006, Thomas H. Davenport, a well-known American academic author, published an article in Harvard Business Review called Competing on Analytics. In this article, the author explains the need for analytics in this way:

"Organizations are competing on analytics not just because they can—business today is awash in data and data crunchers—but also because they should. At a time when firms in many industries offer similar products and use comparable technologies, business processes are among the last remaining points of differentiation. And analytics competitors wring every last drop of value from those processes."

After this article, companies in different industries started to learn how to use traditional and new data sources to gain competitive advantages; but what is analytics?

Today, the term analytics is used to describe different techniques and methods that extract new knowledge from data and communicate it. The term comprises statistics, data mining, machine learning, operations research, data visualization, and many other areas.

An important point is that analytics will not provide any new value or advantage by itself; it will help people to take better decisions. Analytics is about replacing decisions based on feelings and intuition with decisions based on data and evidence.

Predictive analytics is a subset of analytics whose objective is to extract knowledge from data and use it to predict something. Eric Siegel in his book Predictive Analytics describes the term as:

"Technology that learns from experience (data) to predict the future behavior of individuals in order to drive better decisions."

Generally, in real life, an accurate prediction is not possible, but we can extract a lot of value from predictions with low accuracy. Think of an insurance company, they have a lot of claims to review, but have just a few people to do it. They know that some claims are fraudulent, but they don't have enough people and time to review all claims. They can randomly choose some claims or they can develop a system that selects the claims with a higher probability of fraud. If their system predictions are better than just guessing, they will improve their fraud detecting efforts and they will save a lot of money in fraudulent claims.

As we've seen, everything is about helping people to take better decisions; for this reason we've got to communicate the insights we've discovered from data in an easy to understand and intuitive way, especially when we deal with complex problems. Data visualization can help us to communicate our discoveries to our users. The term, data visualization, is used in many disciplines with many different meanings. We use this term to describe the visual representation of data; our main goal is to communicate information clearly and efficiently to business users.

In this introduction, we've used the term value many times and it's important to have an intuitive definition. We develop software solutions to obtain a business benefit; generally, we want to increase income or reduce cost. This business benefit has an economic value; the difference between this economic value and the cost of developing the solution is the value you will obtain.

Usually, a predictive analytics project follows some common steps that we call the predictive analytics process:

  1. Problem definition: Before we start, we need to understand the business problem and the goals.
  2. Extract and load data: An analytics application starts with raw data that is stored in a database, files, or other systems. We need to extract data from its original location and load it into our analytics tools.
  3. Prepare data: Sometimes, the data needs transformation because of its format or because of poor quality.
  4. Create a model: In this step, we will develop the predictive model.
  5. Performance evaluation: After creating the model, we'll evaluate its performance.
  6. Deploy the model and create a visual application: In the last step, we will deploy the predictive model and create the application for the business user.

The steps in this process don't have strict borders; sometimes, we go back and forth in the process.

You have been reading a chapter from
Predictive Analytics using Rattle and Qlik Sense
Published in: Jun 2015
Publisher:
ISBN-13: 9781784395803
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image