Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Scala for Machine Learning

You're reading from   Scala for Machine Learning Leverage Scala and Machine Learning to construct and study systems that can learn from data

Arrow left icon
Product type Paperback
Published in Dec 2014
Publisher
ISBN-13 9781783558742
Length 624 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Patrick R. Nicolas Patrick R. Nicolas
Author Profile Icon Patrick R. Nicolas
Patrick R. Nicolas
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Getting Started 2. Hello World! FREE CHAPTER 3. Data Preprocessing 4. Unsupervised Learning 5. Naïve Bayes Classifiers 6. Regression and Regularization 7. Sequential Data Models 8. Kernel Models and Support Vector Machines 9. Artificial Neural Networks 10. Genetic Algorithms 11. Reinforcement Learning 12. Scalable Frameworks A. Basic Concepts Index

Assessing a model

Evaluating a model is an essential part of the workflow. There is no point in creating the most sophisticated model if you do not have the tools to assess its quality. The validation process consists of defining some quantitative reliability criteria, setting a strategy such as an N-Fold cross-validation scheme, and selecting the appropriate labeled data.

Validation

The purpose of this section is to create a Scala class to be used in future chapters for validating models. For starters, the validation process relies on a set of metrics to quantify the fitness of a model generated through training.

Key metrics

Let's consider a simple classification model with two classes defined as positive (with respect to negative) represented with Black (with respect to White) color in the following diagram. Data scientists use the following terminology:

  • True positives (TP): These are observations that are correctly labeled as belonging to the positive class (white dots on a dark background...
You have been reading a chapter from
Scala for Machine Learning
Published in: Dec 2014
Publisher:
ISBN-13: 9781783558742
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image