Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Unity 5.x Game AI Programming Cookbook

You're reading from   Unity 5.x Game AI Programming Cookbook Build and customize a wide range of powerful Unity AI systems with over 70 hands-on recipes and techniques

Arrow left icon
Product type Paperback
Published in Mar 2016
Publisher Packt
ISBN-13 9781783553570
Length 278 pages
Edition 1st Edition
Tools
Arrow right icon
Authors (2):
Arrow left icon
Jorge Palacios Jorge Palacios
Author Profile Icon Jorge Palacios
Jorge Palacios
Jorge Elieser P Garrido Jorge Elieser P Garrido
Author Profile Icon Jorge Elieser P Garrido
Jorge Elieser P Garrido
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Behaviors – Intelligent Movement FREE CHAPTER 2. Navigation 3. Decision Making 4. Coordination and Tactics 5. Agent Awareness 6. Board Games AI 7. Learning Techniques 8. Miscellaneous Index

Shooting a projectile

This is the stepping stone for scenarios where we want to have control over gravity-reliant objects, such as balls and grenades, so we can then predict the projectile's landing spot, or be able to effectively shoot a projectile at a given target.

Getting ready

This recipe differs slightly as it doesn't rely on the base AgentBehaviour class.

How to do it...

  1. Create the Projectile class along with its member variables to handle the physics:
    using UnityEngine;
    using System.Collections;
    
    public class Projectile : MonoBehaviour
    {
        private bool set = false;
        private Vector3 firePos;
        private Vector3 direction;
        private float speed;
        private float timeElapsed;
    }
  2. Define the Update function:
    void Update ()
    {
        if (!set)
            return;
        timeElapsed += Time.deltaTime;
        transform.position = firePos + direction * speed * timeElapsed;
        transform.position += Physics.gravity * (timeElapsed * timeElapsed) / 2.0f;
        // extra validation for cleaning the scene
        if (transform.position.y < -1.0f)
            Destroy(this.gameObject);// or set = false; and hide it
    }
  3. Finally, implement the Set function in order to fire the game object (for example, calling it after it is instantiated in the scene):
    public void Set (Vector3 firePos, Vector3 direction, float speed)
    {
        this.firePos = firePos;
        this.direction = direction.normalized;
        this.speed = speed;
        transform.position = firePos;
        set = true;
    }

How it works...

This behavior uses high-school physics in order to generate the parabolic movement.

There's more...

We could also take another approach: implementing public properties in the script or declaring member variables as public and, instead of calling the Set function, having the script disabled by default in the prefab and enabling it after all the properties have been set. That way, we could easily apply the object pool pattern.

See also

For further information on the object pool pattern, please refer to the following Wikipedia article and an official Unity Technologies video tutorial available online at the following addresses:

You have been reading a chapter from
Unity 5.x Game AI Programming Cookbook
Published in: Mar 2016
Publisher: Packt
ISBN-13: 9781783553570
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image