Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning Engineering  with Python

You're reading from   Machine Learning Engineering with Python Manage the lifecycle of machine learning models using MLOps with practical examples

Arrow left icon
Product type Paperback
Published in Aug 2023
Publisher Packt
ISBN-13 9781837631964
Length 462 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Andrew P. McMahon Andrew P. McMahon
Author Profile Icon Andrew P. McMahon
Andrew P. McMahon
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Introduction to ML Engineering 2. The Machine Learning Development Process FREE CHAPTER 3. From Model to Model Factory 4. Packaging Up 5. Deployment Patterns and Tools 6. Scaling Up 7. Deep Learning, Generative AI, and LLMOps 8. Building an Example ML Microservice 9. Building an Extract, Transform, Machine Learning Use Case 10. Other Books You May Enjoy
11. Index

Deployment Patterns and Tools

In this chapter, we will dive into some important concepts around the deployment of your machine learning (ML) solution. We will begin to close the circle of the ML development lifecycle and lay the groundwork for getting your solutions out into the world.

The act of deploying software, of taking it from a demo you can show off to a few stakeholders to a service that will ultimately impact customers or colleagues, is a very exhilarating but often challenging exercise. It also remains one of the most difficult aspects of any ML project and getting it right can ultimately make the difference between generating value or just hype.

We are going to explore some of the main concepts that will help your ML engineering team cross the chasm between a fun proof-of-concept to solutions that can run on scalable infrastructure in an automated way. This will require us to first cover questions of how to design and architect your ML systems, particularly if...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image