Apache Spark is an in-memory, cluster-based, parallel processing system that provides a wide range of functionality such as graph processing, machine learning, stream processing, and SQL. This book aims to take your limited knowledge of Spark to the next level by teaching you how to expand your Spark functionality.
The book opens with an overview of the Spark ecosystem. The book will introduce you to Project Catalyst and Tungsten. You will understand how Memory Management and Binary Processing, Cache-aware Computation, and Code Generation are used to speed things up dramatically. The book goes on to show how to incorporate H20 and Deeplearning4j for machine learning and Juypter Notebooks, Zeppelin, Docker and Kubernetes for cloud-based Spark. During the course of the book, you will also learn about the latest enhancements in Apache Spark 2.2, such as using the DataFrame and Dataset APIs exclusively, building advanced, fully automated Machine Learning pipelines with SparkML and perform graph analysis using the new GraphFrames API.
Germany
Slovakia
Canada
Brazil
Singapore
Hungary
Philippines
Mexico
Thailand
Ukraine
Luxembourg
Estonia
Lithuania
Norway
Chile
United States
Great Britain
India
Spain
South Korea
Ecuador
Colombia
Taiwan
Switzerland
Indonesia
Cyprus
Denmark
Finland
Poland
Malta
Czechia
New Zealand
Austria
Turkey
France
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Malaysia
South Africa
Netherlands
Bulgaria
Latvia
Australia
Japan
Russia