Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
ElasticSearch Cookbook - Second Edition

You're reading from   ElasticSearch Cookbook - Second Edition Over 130 advanced recipes to search, analyze, deploy, manage, and monitor data effectively with ElasticSearch

Arrow left icon
Product type Paperback
Published in Jan 2015
Publisher
ISBN-13 9781783554836
Length 472 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Alberto Paro Alberto Paro
Author Profile Icon Alberto Paro
Alberto Paro
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Getting Started FREE CHAPTER 2. Downloading and Setting Up 3. Managing Mapping 4. Basic Operations 5. Search, Queries, and Filters 6. Aggregations 7. Scripting 8. Rivers 9. Cluster and Node Monitoring 10. Java Integration 11. Python Integration 12. Plugin Development Index

Preface

One of the main requirements of today's applications is search capability. In the market, we can find a lot of solutions that answer this need, both in commercial as well as the open source world. One of the most used libraries for searching is Apache Lucene. This library is the base of a large number of search solutions such as Apache Solr, Indextank, and ElasticSearch.

ElasticSearch is written with both cloud and distributed computing in mind. Its main author, Shay Banon, who is famous for having developed Compass (http://www.compass-project.org), released the first version of ElasticSearch in March 2010.

Thus, the main scope of ElasticSearch is to be a search engine; it also provides a lot of features that allow you to use it as a data store and an analytic engine using aggregations.

ElasticSearch contains a lot of innovative features: it is JSON/REST-based, natively distributed in a Map/Reduce approach, easy to set up, and extensible with plugins. In this book, we will go into the details of these features and many others available in ElasticSearch.

Before ElasticSearch, only Apache Solr was able to provide some of these functionalities, but it was not designed for the cloud and does not use the JSON/REST API. In the last few years, this situation has changed a bit with the release of the SolrCloud in 2012. For users who want to more thoroughly compare these two products, I suggest you read posts by Rafał Kuć, available at http://blog.sematext.com/2012/08/23/solr-vs-elasticsearch-part-1-overview/.

ElasticSearch is a product that is in a state of continuous evolution, and new functionalities are released by both the ElasticSearch company (the company founded by Shay Banon to provide commercial support for ElasticSearch) and ElasticSearch users as plugins (mainly available on GitHub).

Founded in 2012, the ElasticSearch company has raised a total of USD 104 million in funding. ElasticSearch's success can best be described by the words of Steven Schuurman, the company's cofounder and CEO:

It's incredible to receive this kind of support from our investors over such a short period of time. This speaks to the importance of what we're doing: businesses are generating more and more data—both user- and machine-generated—and it has become a strategic imperative for them to get value out of these assets, whether they are starting a new data-focused project or trying to leverage their current Hadoop or other Big data investments.

ElasticSearch has an impressive track record for its search product, powering customers such as Fourquare (which indexes over 50 million venues), the online music distribution platform SoundCloud, StumbleUpon, and the enterprise social network Xing, which has 14 million members. It also powers GitHub, which searches 20 terabytes of data and 1.3 billion files, and Loggly, which uses ElasticSearch as a key value store to index clusters of data for rapid analytics of logfiles.

In my opinion, ElasticSearch is probably one of the most powerful and easy-to-use search solutions on the market. Throughout this book and these recipes, the book's reviewers and I have sought to transmit our knowledge, passion, and best practices to help readers better manage ElasticSearch.

lock icon The rest of the chapter is locked
Next Section arrow right
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image