Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Essential PySpark for Scalable Data Analytics

You're reading from   Essential PySpark for Scalable Data Analytics A beginner's guide to harnessing the power and ease of PySpark 3

Arrow left icon
Product type Paperback
Published in Oct 2021
Publisher Packt
ISBN-13 9781800568877
Length 322 pages
Edition 1st Edition
Languages
Tools
Concepts
Arrow right icon
Author (1):
Arrow left icon
Sreeram Nudurupati Sreeram Nudurupati
Author Profile Icon Sreeram Nudurupati
Sreeram Nudurupati
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Section 1: Data Engineering
2. Chapter 1: Distributed Computing Primer FREE CHAPTER 3. Chapter 2: Data Ingestion 4. Chapter 3: Data Cleansing and Integration 5. Chapter 4: Real-Time Data Analytics 6. Section 2: Data Science
7. Chapter 5: Scalable Machine Learning with PySpark 8. Chapter 6: Feature Engineering – Extraction, Transformation, and Selection 9. Chapter 7: Supervised Machine Learning 10. Chapter 8: Unsupervised Machine Learning 11. Chapter 9: Machine Learning Life Cycle Management 12. Chapter 10: Scaling Out Single-Node Machine Learning Using PySpark 13. Section 3: Data Analysis
14. Chapter 11: Data Visualization with PySpark 15. Chapter 12: Spark SQL Primer 16. Chapter 13: Integrating External Tools with Spark SQL 17. Chapter 14: The Data Lakehouse 18. Other Books You May Enjoy

Chapter 1: Distributed Computing Primer

This chapter introduces you to the Distributed Computing paradigm and shows you how Distributed Computing can help you to easily process very large amounts of data. You will learn about the concept of Data Parallel Processing using the MapReduce paradigm and, finally, learn how Data Parallel Processing can be made more efficient by using an in-memory, unified data processing engine such as Apache Spark.

Then, you will dive deeper into the architecture and components of Apache Spark along with code examples. Finally, you will get an overview of what's new with the latest 3.0 release of Apache Spark.

In this chapter, the key skills that you will acquire include an understanding of the basics of the Distributed Computing paradigm and a few different implementations of the Distributed Computing paradigm such as MapReduce and Apache Spark. You will learn about the fundamentals of Apache Spark along with its architecture and core components, such as the Driver, Executor, and Cluster Manager, and how they come together as a single unit to perform a Distributed Computing task. You will learn about Spark's Resilient Distributed Dataset (RDD) API along with higher-order functions and lambdas. You will also gain an understanding of the Spark SQL Engine and its DataFrame and SQL APIs. Additionally, you will implement working code examples. You will also learn about the various components of an Apache Spark data processing program, including transformations and actions, and you will learn about the concept of Lazy Evaluation.

In this chapter, we're going to cover the following main topics:

  • Introduction Distributed Computing
  • Distributed Computing with Apache Spark
  • Big data processing with Spark SQL and DataFrames
You have been reading a chapter from
Essential PySpark for Scalable Data Analytics
Published in: Oct 2021
Publisher: Packt
ISBN-13: 9781800568877
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image