Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python for Finance Cookbook – Second Edition

You're reading from   Python for Finance Cookbook – Second Edition Over 80 powerful recipes for effective financial data analysis

Arrow left icon
Product type Paperback
Published in Dec 2022
Publisher Packt
ISBN-13 9781803243191
Length 740 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Eryk Lewinson Eryk Lewinson
Author Profile Icon Eryk Lewinson
Eryk Lewinson
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Acquiring Financial Data 2. Data Preprocessing FREE CHAPTER 3. Visualizing Financial Time Series 4. Exploring Financial Time Series Data 5. Technical Analysis and Building Interactive Dashboards 6. Time Series Analysis and Forecasting 7. Machine Learning-Based Approaches to Time Series Forecasting 8. Multi-Factor Models 9. Modeling Volatility with GARCH Class Models 10. Monte Carlo Simulations in Finance 11. Asset Allocation 12. Backtesting Trading Strategies 13. Applied Machine Learning: Identifying Credit Default 14. Advanced Concepts for Machine Learning Projects 15. Deep Learning in Finance 16. Other Books You May Enjoy
17. Index

Converting currencies

Another quite common preprocessing step you might encounter while working on financial tasks is converting currencies. Imagine you have a portfolio of multiple assets, priced in different currencies and you would like to arrive at a total portfolio worth. The simplest example might be American and European stocks.

In this recipe, we show how to easily convert stock prices from USD to EUR. However, the very same steps can be used to convert any pair of currencies.

How to do it…

Execute the following steps to convert stock prices from USD to EUR.

  1. Import the libraries:
import pandas as pd
import yfinance as yf
from forex_python.converter import CurrencyRates
  1. Download Apple's OHLC prices from January 2020:
df = yf.download("AAPL",
                 start="2020-01-01",
                 end="2020-01-31",
                 progress=False)
df = df.drop(columns=["Adj Close", "Volume"])
  1. Instantiate the CurrencyRates...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image