Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Augmentation with Python

You're reading from   Data Augmentation with Python Enhance deep learning accuracy with data augmentation methods for image, text, audio, and tabular data

Arrow left icon
Product type Paperback
Published in Apr 2023
Publisher Packt
ISBN-13 9781803246451
Length 394 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Duc Haba Duc Haba
Author Profile Icon Duc Haba
Duc Haba
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Part 1: Data Augmentation
2. Chapter 1: Data Augmentation Made Easy FREE CHAPTER 3. Chapter 2: Biases in Data Augmentation 4. Part 2: Image Augmentation
5. Chapter 3: Image Augmentation for Classification 6. Chapter 4: Image Augmentation for Segmentation 7. Part 3: Text Augmentation
8. Chapter 5: Text Augmentation 9. Chapter 6: Text Augmentation with Machine Learning 10. Part 4: Audio Data Augmentation
11. Chapter 7: Audio Data Augmentation 12. Chapter 8: Audio Data Augmentation with Spectrogram 13. Part 5: Tabular Data Augmentation
14. Chapter 9: Tabular Data Augmentation 15. Index 16. Other Books You May Enjoy

Data Augmentation Made Easy

Data augmentation is essential for developing a successful deep learning (DL) project. However, data scientists and developers often overlook this crucial step. It is no secret that you will spend the majority of your project time gathering, cleaning, and augmenting the dataset in a real-world DL project. Thus, learning how to expand the dataset without purchasing new data is essential. This book covers standard and advanced techniques for extending image, text, audio, and tabular datasets. Furthermore, you will learn about data biases and learn how to code on Jupyter Python Notebooks.

Chapter 1 will introduce various data augmentation concepts, set up the coding environment, and create the foundation class. Later chapters will explain various techniques in detail, including Python coding. The effective use of data augmentation has proven to be the deciding factor between success and failure in machine learning (ML). Many real-world ML projects stay in the conceptual phase because of insufficient data for training the ML model. Data augmentation is a cost-effective technique that can increase the size of the dataset, lower the training error rate, and produce a more accurate prediction and forecast.

Fun fact

The car gasoline analogy is helpful for students who first learn about data augmentation and artificial intelligence (AI). You can think of data for the AI engine as the gasoline and data augmentation as the additive, such as the Chevron Techron fuel cleaner, that makes your car engine run faster, smoother, and further without extra petrol.

In this chapter, we’ll define the data augmentation role and the limitations of extending data without changing its integrity. We’ll briefly discuss the different types of input data, such as image, text, audio, and tabular data, and the challenges in supplementing it. Finally, we’ll set up the system requirements and the programming style in the accompanying Python notebook.

I designed this book to be a hands-on journey. It will be most effective to read a chapter, run the code, re-read the part of the chapter that confused you, and jump back to hacking the code until you firmly understand the concept or technique that was presented.

You are encouraged to change or add new code to the Python notebook. The primary purpose of this book is interactive learning. So, if something goes wrong, download a fresh copy from the book's GitHub. The surest method to learn is to make mistakes and create something new.

Data augmentation is an iterative process. There is no fixed recipe. In other words, depending on the dataset, you select augmented functions and jiggle the parameters. A subject domain expert may provide insight into how much distortion is acceptable. By the end of this chapter, you will know the general rules for data augmentation, what type of input data can be augmented, the programming style, and how to set up a Python Notebook online or offline.

In particular, this chapter covers the following primary topics:

  • Data augmentation role
  • Data input types
  • Python Notebook
  • Programming styles

Let’s start with the data augmentation role.

You have been reading a chapter from
Data Augmentation with Python
Published in: Apr 2023
Publisher: Packt
ISBN-13: 9781803246451
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image