Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Practical Real-time Data Processing and Analytics

You're reading from   Practical Real-time Data Processing and Analytics Distributed Computing and Event Processing using Apache Spark, Flink, Storm, and Kafka

Arrow left icon
Product type Paperback
Published in Sep 2017
Publisher Packt
ISBN-13 9781787281202
Length 360 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Shilpi Saxena Shilpi Saxena
Author Profile Icon Shilpi Saxena
Shilpi Saxena
Saurabh Gupta Saurabh Gupta
Author Profile Icon Saurabh Gupta
Saurabh Gupta
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Introducing Real-Time Analytics FREE CHAPTER 2. Real Time Applications – The Basic Ingredients 3. Understanding and Tailing Data Streams 4. Setting up the Infrastructure for Storm 5. Configuring Apache Spark and Flink 6. Integrating Storm with a Data Source 7. From Storm to Sink 8. Storm Trident 9. Working with Spark 10. Working with Spark Operations 11. Spark Streaming 12. Working with Apache Flink 13. Case Study

Shared variables – broadcast variables and accumulators


While working in distributed compute programs and modules, where the code executes on different nodes and/or different workers, a lot of time a need arises to share data across the execution units in the distributed execution setup. Thus Spark has the concept of shared variables. The shared variables are used to share information between the parallel executing tasks across various workers or the tasks and the drivers. Spark supports two types of shared variable:

  • Broadcast variables
  • Accumulators

In the following sections, we will look at these two types of Spark variables, both conceptually and pragmatically.

Broadcast variables

These are the variables that the programmer intends to share to all execution units throughout the cluster. Though they sound very simple to work with, there are a few aspects the programmers need to be cognizant of while working with broadcast variables: they need to be able to fit in the memory of each node in the...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image