Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Data Analysis, Second Edition

You're reading from   Python Data Analysis, Second Edition Data manipulation and complex data analysis with Python

Arrow left icon
Product type Paperback
Published in Mar 2017
Publisher Packt
ISBN-13 9781787127487
Length 330 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Ivan Idris Ivan Idris
Author Profile Icon Ivan Idris
Ivan Idris
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Getting Started with Python Libraries FREE CHAPTER 2. NumPy Arrays 3. The Pandas Primer 4. Statistics and Linear Algebra 5. Retrieving, Processing, and Storing Data 6. Data Visualization 7. Signal Processing and Time Series 8. Working with Databases 9. Analyzing Textual Data and Social Media 10. Predictive Analytics and Machine Learning 11. Environments Outside the Python Ecosystem and Cloud Computing 12. Performance Tuning, Profiling, and Concurrency A. Key Concepts
B. Useful Functions C. Online Resources

Autocorrelation plots


Autocorrelation plots graph autocorrelations of time series data for different time lags. In layman's terms, autocorrelation is the correlation of the values at time n and the values at time n+l, where l is the time lag. Generally, these plots are used for checking whether the time series has randomness in its progression. Autocorrelations are near zero for all time-lag separations in the case of a random time series, and have a non-zero value of significance at some or all time-lag separations for a non-random time series. We explain autocorrelation further in Chapter 7, Signal Processing and Time Series.

The autocorrelation_plot() Pandas function in pandas.tools.plotting can draw an autocorrelation plot. The following is the code from the ch-06.ipynb file in this book's code bundle:

import matplotlib.pyplot as plt 
import numpy as np 
import pandas as pd 
from pandas.tools.plotting import autocorrelation_plot 
 
df = pd.read_csv('transcount...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image