In the last two chapters, we trained deep learning models for classification, regression, and image recognition tasks. In this chapter, we will discuss some important issues in regard to managing deep learning projects. While this chapter may seem somewhat theoretical, if any of the issues discussed are not correctly managed, it can derail your deep learning project. We will look at how to choose evaluation metrics and how to create an estimate of how well a deep learning model will perform before you begin modeling. Next, we will move onto data distribution and the mistakes often made in splitting data into correct partitions for training. Many machine learning projects fail in production use because the data distribution is different to what the model was trained with. We will look at data augmentation, a valuable method to enhance your model&apos...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand