Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Azure Data Engineer Associate Certification Guide

You're reading from   Azure Data Engineer Associate Certification Guide Ace the DP-203 exam with advanced data engineering skills

Arrow left icon
Product type Paperback
Published in May 2024
Publisher Packt
ISBN-13 9781805124689
Length 548 pages
Edition 2nd Edition
Languages
Tools
Concepts
Arrow right icon
Authors (3):
Arrow left icon
Newton Alex Newton Alex
Author Profile Icon Newton Alex
Newton Alex
Giacinto Palmieri Giacinto Palmieri
Author Profile Icon Giacinto Palmieri
Giacinto Palmieri
Mr. Surendra Mettapalli Mr. Surendra Mettapalli
Author Profile Icon Mr. Surendra Mettapalli
Mr. Surendra Mettapalli
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Part 1: Azure Basics FREE CHAPTER
2. Chapter 1: Introducing Azure Basics 3. Part 2: Data Storage
4. Chapter 2: Implementing a Partition Strategy 5. Chapter 3: Designing and Implementing the Data Exploration Layer 6. Part 3:Data Processing
7. Chapter 4: Ingesting and Transforming Data 8. Chapter 5: Developing a Batch Processing Solution 9. Chapter 6: Developing a Stream Processing Solution 10. Chapter 7: Managing Batches and Pipelines 11. Part 4:Secure, Monitor, and Optimize Data Storage and Processing
12. Chapter 8: Implementing Data Security 13. Chapter 9: Monitoring Data Storage and Data Processing 14. Chapter 10: Optimizing and Troubleshooting Data Storage and Data Processing 15. Chapter 11: Accessing the Online Practice Resources 16. Other Books You May Enjoy

Summary

That brings us to the end of this chapter. This is one of the most important chapters, both from a syllabus perspective and a data engineering perspective. Batch and streaming solutions are fundamental to building an effective Big Data processing system.

To summarize what you learned in this chapter, you started with designs for streaming systems using Event Hubs, ASA, and Spark Streaming and moved on to grasp time series data and the important concepts such as windowed aggregates, checkpointing, replaying archived data, handling schema drifts, scaling using partitions, and adding processing units. You then followed the exam Study Guide into a detour dedicated to the distinction between analytical processes and transactional processes and how you can optimize pipelines for each type of access, using Cosmos DB as a notable example. Finally, you returned to the topic of stream data and explored the upsert feature, and towards the end, learned about error handling and interruption...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image