Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
C++ Data Structures and Algorithm Design Principles

You're reading from   C++ Data Structures and Algorithm Design Principles Leverage the power of modern C++ to build robust and scalable applications

Arrow left icon
Product type Paperback
Published in Oct 2019
Publisher
ISBN-13 9781838828844
Length 626 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (4):
Arrow left icon
Anil Achary Anil Achary
Author Profile Icon Anil Achary
Anil Achary
John Carey John Carey
Author Profile Icon John Carey
John Carey
Payas Rajan Payas Rajan
Author Profile Icon Payas Rajan
Payas Rajan
Shreyans Doshi Shreyans Doshi
Author Profile Icon Shreyans Doshi
Shreyans Doshi
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

About the Book 1. Lists, Stacks, and Queues 2. Trees, Heaps, and Graphs FREE CHAPTER 3. Hash Tables and Bloom Filters 4. Divide and Conquer 5. Greedy Algorithms 6. Graph Algorithms I 7. Graph Algorithms II 8. Dynamic Programming I 9. Dynamic Programming II 1. Appendix

Graphs

Although a tree is a pretty good way to represent hierarchical data, we can't represent circular or cyclic dependencies in a tree because we always have a single and unique path to go from one node to another. However, there are more complex scenarios that have a cyclic structure inherently. For example, consider a road network. There can be multiple ways to go from one place (places can be represented as nodes) to another. Such a set of scenarios can be better represented using graphs.

Unlike a tree, a graph has to store data for the nodes, as well as for the edges between the nodes. For example, in any road network, for each node (place), we have to store the information about which other nodes (places) it connects to. This way, we can form a graph with all the required nodes and edges. This is called an unweighted graph. We can add weights, or more information, to each of the edges. For our road network example, we can add the distance of each edge (path) from one node (place...

You have been reading a chapter from
C++ Data Structures and Algorithm Design Principles
Published in: Oct 2019
Publisher:
ISBN-13: 9781838828844
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image