Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Causal Inference and Discovery in Python

You're reading from   Causal Inference and Discovery in Python Unlock the secrets of modern causal machine learning with DoWhy, EconML, PyTorch and more

Arrow left icon
Product type Paperback
Published in May 2023
Publisher Packt
ISBN-13 9781804612989
Length 456 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Aleksander Molak Aleksander Molak
Author Profile Icon Aleksander Molak
Aleksander Molak
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Preface 1. Part 1: Causality – an Introduction
2. Chapter 1: Causality – Hey, We Have Machine Learning, So Why Even Bother? FREE CHAPTER 3. Chapter 2: Judea Pearl and the Ladder of Causation 4. Chapter 3: Regression, Observations, and Interventions 5. Chapter 4: Graphical Models 6. Chapter 5: Forks, Chains, and Immoralities 7. Part 2: Causal Inference
8. Chapter 6: Nodes, Edges, and Statistical (In)dependence 9. Chapter 7: The Four-Step Process of Causal Inference 10. Chapter 8: Causal Models – Assumptions and Challenges 11. Chapter 9: Causal Inference and Machine Learning – from Matching to Meta-Learners 12. Chapter 10: Causal Inference and Machine Learning – Advanced Estimators, Experiments, Evaluations, and More 13. Chapter 11: Causal Inference and Machine Learning – Deep Learning, NLP, and Beyond 14. Part 3: Causal Discovery
15. Chapter 12: Can I Have a Causal Graph, Please? 16. Chapter 13: Causal Discovery and Machine Learning – from Assumptions to Applications 17. Chapter 14: Causal Discovery and Machine Learning – Advanced Deep Learning and Beyond 18. Chapter 15: Epilogue 19. Index 20. Other Books You May Enjoy

Graphs and distributions and how to map between them

In this section, we will focus on the mappings between the statistical and graphical properties of a system.

To be more precise, we’ll be interested in understanding how to translate between graphical and statistical independencies. In a perfect world, we’d like to be able to do it in both directions: from graph independence to statistical independence and the other way around.

It turns out that this is possible under certain assumptions.

The key concept in this chapter is one of independence. Let’s start by reviewing what it means.

How to talk about independence

Generally speaking, we say that two variables, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>X</mml:mi></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>Y</mml:mi></mml:math>, are independent when our knowledge about <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>X</mml:mi></mml:math> does not change our knowledge about <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>Y</mml:mi></mml:math> (and vice versa). In terms of probability distributions, we can express it in the following way:

<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math" display="block"><mml:mi>P</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi>Y</mml:mi></mml:mrow></mml:mfenced><mml:mo>=</mml:mo><mml:mi>P</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi>Y</mml:mi></mml:mrow><mml:mrow><mml:mi>X</mml:mi></mml:mrow></mml:mfenced></mml:math>
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math" display="block"><mml:mi>P</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi>X</mml:mi></mml:mrow></mml:mfenced><mml:mo>=</mml:mo><mml:mi>P</mml:mi><mml:mo>(</mml:mo><mml:mi>X</mml:mi><mml:mo>|</mml:mo><mml:mi>Y</mml:mi><mml:mo>)</mml:mo></mml:math>

In other words: the marginal probability of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>Y</mml:mi></mml:math> is the same as the conditional probability of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>Y</mml:mi></mml:math> given...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image