Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
TensorFlow: Powerful Predictive Analytics with TensorFlow

You're reading from   TensorFlow: Powerful Predictive Analytics with TensorFlow Predict valuable insights of your data with TensorFlow

Arrow left icon
Product type Paperback
Published in Mar 2018
Publisher Packt
ISBN-13 9781789136913
Length 164 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Md. Rezaul Karim Md. Rezaul Karim
Author Profile Icon Md. Rezaul Karim
Md. Rezaul Karim
Arrow right icon
View More author details
Toc

Getting Started with TensorFlow – Linear Regression and Beyond

In this example, we will take a closer look at TensorFlow's and TensorBoard's main concepts and try to do some basic operations to get you started. The model we want to implement simulates the linear regression.

In the statistics and machine learning realm, linear regression is a technique frequently used to measure the relationship between variables. This is also a quite simple but effective algorithm that can be used in predictive modeling too. Linear regression models the relationship between a dependent variable yi, an interdependent variable xi, and a random term b. This can be seen as follows:

Getting Started with TensorFlow – Linear Regression and Beyond

Now to conceptualize the preceding equation, I am going to write a simple Python program for creating data into a 2D space. Then I will use TensorFlow to look for the line that best fits in the data points:

# Import libraries (Numpy, matplotlib)
import numpy as np
import matplotlib.pyplot as plot

# Create 1000 points following a function y=0.1 * x + 0.4 (i.e. y \= W * x + b) with some normal random distribution:

num_points = 1000
vectors_set = []
for i in range(num_points):
    W = 0.1 # W
    b = 0.4 # b
    x1 = np.random.normal(0.0, 1.0)
    nd = np.random.normal(0.0, 0.05)
    y1 = W * x1 + b
	
 # Add some impurity with some normal distribution -i.e. nd:
    y1 = y1+nd
	
 # Append them and create a combined vector set:
    vectors_set.append([x1, y1])
	
# Separate the data point across axises:
x_data = [v[0] for v in vectors_set]
y_data = [v[1] for v in vectors_set]

# Plot and show the data points in a 2D space
plt.plot(x_data, y_data, 'r*', label='Original data')
plt.legend()
plt.show()

If your compiler does not make any complaints, you should observe the following graph:

Getting Started with TensorFlow – Linear Regression and Beyond

Figure 12: Randomly generated (but original) data

Well, so far we have just created a few data points without any associated model that could be executed through TensorFlow. So the next step is to create a linear regression model to be able to obtain the output values y that is estimated from the input data points–that is, x_data. In this context, we have only two associated parameters–that is, W and b. Now the objective is to create a graph that allows finding the values for these two parameters based on the input data x_data by adjusting them to y_data–that is, optimization problem.

So the target function in our case would be as follows:

Getting Started with TensorFlow – Linear Regression and Beyond

If you recall, we defined W = 0.1 and b = 0.4 while creating the data points in the 2D space. Now TensorFlow has to optimize these two values so that W tends to 0.1 and b to 0.4, but without knowing any optimization function, TensorFlow does not even know anything.

A standard way to solve such optimization problems is to iterate through each value of the data points and adjust the value of W and b in order to get a more precise answer on each iteration. Now to realize if the values are really improving, we need to define a cost function that measures how good a certain line is.

In our case, the cost function is the mean squared error that helps find the average of the errors based on the distance function between the real data points and the estimated ones on each iteration. We start by importing the TensorFlow library:

import tensorflow as tf
W = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
b = tf.Variable(tf.zeros([1]))
y = W * x_data + b

In the preceding code segment, we are generating a random point using a different strategy and storing in variable W. Now let's define a loss function loss=mean [(y−y_data) 2] and this returns a scalar value with the mean of all distances between our data and the model prediction. In terms of TensorFlow convention, the loss function can be expressed as follows:

loss = tf.reduce_mean(tf.square(y - y_data))

Without going into further detail, we can use some widely used optimization algorithms such as gradient descent. At a minimal level, the gradient descent is an algorithm that works on a set of given parameters that we already have. It starts with an initial set of parameter values and iteratively moves toward a set of values that minimize the function by taking another parameter called learning rate. This iterative minimization is achieved by taking steps in the negative direction of the function called gradient.

optimizer = tf.train.GradientDescentOptimizer(0.6)
train = optimizer.minimize(loss)

Before running this optimization function, we need to initialize all the variables that we have so far. Let's do it using TensorFlow convention as follows:

init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)

Since we have created a TensorFlow session, we are ready for the iterative process that helps us find the optimal values of W and b:

for i in range(16):
  sess.run(train)
  print(i, sess.run(W), sess.run(b), sess.run(loss))

You should observe the following output:

>>>
0 [ 0.18418592] [ 0.47198644] 0.0152888
1 [ 0.08373772] [ 0.38146532] 0.00311204
2 [ 0.10470386] [ 0.39876288] 0.00262051
3 [ 0.10031486] [ 0.39547175] 0.00260051
4 [ 0.10123629] [ 0.39609471] 0.00259969
5 [ 0.1010423] [ 0.39597753] 0.00259966
6 [ 0.10108326] [ 0.3959994] 0.00259966
7 [ 0.10107458] [ 0.39599535] 0.00259966

Thus you can see the algorithm starts with the initial values of W = 0.18418592 and b = 0.47198644 where the loss is pretty high. Then the algorithm iteratively adjusted the values by minimizing the cost function. In the eighth iteration, all the values tend to our desired values.

Now what if we could plot them? Let's do it by adding the plotting line under the for loop as follows:

Getting Started with TensorFlow – Linear Regression and Beyond

Figure 13: Linear regression after eight iteration that optimizes the loss function

Now let's iterate the same up to the 16th iteration:

>>>
0 [ 0.23306453] [ 0.47967502] 0.0259004
1 [ 0.08183448] [ 0.38200468] 0.00311023
2 [ 0.10253634] [ 0.40177572] 0.00254209
3 [ 0.09969243] [ 0.39778906] 0.0025257
4 [ 0.10008509] [ 0.39859086] 0.00252516
5 [ 0.10003048] [ 0.39842987] 0.00252514
6 [ 0.10003816] [ 0.39846218] 0.00252514
7 [ 0.10003706] [ 0.39845571] 0.00252514
8 [ 0.10003722] [ 0.39845699] 0.00252514
9 [ 0.10003719] [ 0.39845672] 0.00252514
10 [ 0.1000372] [ 0.39845678] 0.00252514
11 [ 0.1000372] [ 0.39845678] 0.00252514
12 [ 0.1000372] [ 0.39845678] 0.00252514
13 [ 0.1000372] [ 0.39845678] 0.00252514
14 [ 0.1000372] [ 0.39845678] 0.00252514
15 [ 0.1000372] [ 0.39845678] 0.00252514

Much better and we're closer to the optimized values, right? Now, what if we further improve our visual analytics through TensorFlow that help visualize what is happening in these graphs. TensorBoard provides a web page for debugging your graph as well as inspecting the used variables, node, edges, and their corresponding connections.

However, to get the facility of the preceding regression analysis, you need to annotate the preceding graphs with the variables such as loss function, W, b, y_data, x_data, and so on. Then you need to generate all the summaries by invoking the function tf.summary.merge_all().

Now, we need to make the following changes to the preceding code. However, it is a good practice to group related nodes on the graph using the tf.name_scope() function. Thus, we can use tf.name_scope() to organize things on the TensorBoard graph view, but let's give it a better name:

with tf.name_scope("LinearRegression") as scope:
   W = tf.Variable(tf.random_uniform([1], -1.0, 1.0), name="Weights")
   b = tf.Variable(tf.zeros([1]))y = W * x_data + b

Then let's annotate the loss function in a similar way, but by giving a suitable name such as LossFunction:

with tf.name_scope("LossFunction") as scope:
  loss = tf.reduce_mean(tf.square(y - y_data))

Let's annotate the loss, weights, and bias that are needed for the TensorBoard:

loss_summary = tf.summary.scalar("loss", loss)
w_ = tf.summary.histogram("W", W)
b_ = tf.summary.histogram("b", b)

Well, once you annotate the graph, it's time to configure the summary by merging them:

merged_op = tf.summary.merge_all()

Now before running the training (after the initialization), write the summary using the tf.summary.FileWriter() API as follows:

writer_tensorboard = tf.summary.FileWriter('/home/asif/LR/', sess.graph_def)

Then start the TensorBoard as follows:

$ tensorboard –logdir=<trace_file_name>

In our case, it could be something like the following:

$ tensorboard --logdir=/home/asif/LR/

Now let's move to http://localhost:6006 and on clicking on the GRAPHS tab, you should see the following graph:

Getting Started with TensorFlow – Linear Regression and Beyond

Figure 14: Main graph and auxiliary nodes on TensorBoard

Source Code for the Linear Regression

We reported for the entire source code for the example previously described:

# Import libraries (Numpy, Tensorflow, matplotlib)
import numpy as np
import matplotlib.pyplot as plot

# Create 1000 points following a function y=0.1 * x + 0.4 (i.e. y = W * x + b) with some normal random distribution:
num_points = 1000
vectors_set = []
for i in range(num_points):
    W = 0.1  # W
    b = 0.4  # b
    x1 = np.random.normal(0.0, 1.0)
    nd = np.random.normal(0.0, 0.05)
    y1 = W * x1 + b
   
# Add some impurity with some normal distribution -i.e. nd:y1 = y1 + nd
   
# Append them and create a combined vector set:
    vectors_set.append([x1, y1])
	
# Separate the data point across axises
x_data = [v[0] for v in vectors_set]
y_data = [v[1] for v in vectors_set]

# Plot and show the data points in a 2D space
plot.plot(x_data, y_data, 'ro', label='Original data')
plot.legend()
plot.show()

import tensorflow as tf

#tf.name_scope organize things on the tensorboard graph view
with tf.name_scope("LinearRegression") as scope:
   W = tf.Variable(tf.random_uniform([1], -1.0, 1.0), name="Weights")
   b = tf.Variable(tf.zeros([1]))
   y = W * x_data + b

# Define a loss function that takes into account the distance between the prediction and our dataset
with tf.name_scope("LossFunction") as scope:
   loss = tf.reduce_mean(tf.square(y - y_data))
  
optimizer = tf.train.GradientDescentOptimizer(0.6)
train = optimizer.minimize(loss)

# Annotate loss, weights, and bias (Needed for tensorboard)
loss_summary = tf.summary.scalar("loss", loss)
w_ = tf.summary.histogram("W", W)
b_ = tf.summary.histogram("b", b)
	
# Merge all the summaries
merged_op = tf.summary.merge_all()

init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)

# Writer for TensorBoard  (replace with our preferred location
writer_tensorboard = tf.summary.FileWriter('/ LR/', sess.graph_def)

for i in range(16):
   sess.run(train)
   print(i, sess.run(W), sess.run(b), sess.run(loss))
   plot.plot(x_data, y_data, 'ro', label='Original data')
   plot.plot(x_data, sess.run(W)*x_data + sess.run(b))
   plot.xlabel('X')
   plot.xlim(-2, 2)
   plot.ylim(0.1, 0.6)
   plot.ylabel('Y')
   plot.legend()
   plot.show()
# Finally, close the TensorFlow session when you're done
sess.close()

Ubuntu may ask you to install the python-tk package. You can do it by executing the following command on Ubuntu:

$ sudo apt-get install python-tk
# For Python 3.x, use the following
$ sudo apt-get install python3-tk
You have been reading a chapter from
TensorFlow: Powerful Predictive Analytics with TensorFlow
Published in: Mar 2018
Publisher: Packt
ISBN-13: 9781789136913
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image