Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning Techniques for Text

You're reading from   Machine Learning Techniques for Text Apply modern techniques with Python for text processing, dimensionality reduction, classification, and evaluation

Arrow left icon
Product type Paperback
Published in Oct 2022
Publisher Packt
ISBN-13 9781803242385
Length 448 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Nikos Tsourakis Nikos Tsourakis
Author Profile Icon Nikos Tsourakis
Nikos Tsourakis
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Chapter 1: Introducing Machine Learning for Text 2. Chapter 2: Detecting Spam Emails FREE CHAPTER 3. Chapter 3: Classifying Topics of Newsgroup Posts 4. Chapter 4: Extracting Sentiments from Product Reviews 5. Chapter 5: Recommending Music Titles 6. Chapter 6: Teaching Machines to Translate 7. Chapter 7: Summarizing Wikipedia Articles 8. Chapter 8: Detecting Hateful and Offensive Language 9. Chapter 9: Generating Text in Chatbots 10. Chapter 10: Clustering Speech-to-Text Transcriptions 11. Index 12. Other Books You May Enjoy

Detecting Spam Emails

Electronic mail is a ubiquitous internet service for exchanging messages between people. A typical problem in this sphere of communication is identifying and blocking unsolicited and unwanted messages. Spam detectors undertake part of this role; ideally, they should not let spam escape uncaught while not obstructing any non-spam.

This chapter deals with this problem from a machine learning (ML) perspective and unfolds as a series of steps for developing and evaluating a typical spam detector. First, we elaborate on the limitations of performing spam detection using traditional programming. Next, we introduce the basic techniques for text representation and preprocessing. Finally, we implement two classifiers using an open source dataset and evaluate their performance based on standard metrics.

By the end of the chapter, you will be able to understand the nuts and bolts behind the different techniques and implement them in Python. But, more importantly, you should be capable of seamlessly applying the same pipeline to similar problems.

We go through the following topics:

  • Obtaining the data
  • Understanding its content
  • Preparing the datasets for analysis
  • Training classification models
  • Realizing the tradeoffs of the algorithms
  • Assessing the performance of the models
You have been reading a chapter from
Machine Learning Techniques for Text
Published in: Oct 2022
Publisher: Packt
ISBN-13: 9781803242385
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image