As introduced in the initial chapters, big data is defined as four Vs, that is, Variance, Velocity, Volume, and Varsity. We also got introduced to Lambda architecture and how it can possibly enable merge outputs from two distinctive processing pipelines. In order to leverage big data technologies to solve processing problems, it may be a good idea to marry Lambda architecture with these Big Data architectures such that we can reap the benefits of both. Though big data refers to an end-to-end solution to handle, process, and manage information across all the four Vs, it has become quite synonymous with the Hadoop Big Data framework. While the initial implementation of Hadoop was introduced by the open source Apache community, its immediate demand brought in a lot of commercial offerings for support. Over a period of time, the community witnessed a number of customized distributions...
Germany
Slovakia
Canada
Brazil
Singapore
Hungary
Philippines
Mexico
Thailand
Ukraine
Luxembourg
Estonia
Lithuania
Norway
Chile
United States
Great Britain
India
Spain
South Korea
Ecuador
Colombia
Taiwan
Switzerland
Indonesia
Cyprus
Denmark
Finland
Poland
Malta
Czechia
New Zealand
Austria
Turkey
France
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Malaysia
South Africa
Netherlands
Bulgaria
Latvia
Australia
Japan
Russia