Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Extending Excel with Python and R

You're reading from   Extending Excel with Python and R Unlock the potential of analytics languages for advanced data manipulation and visualization

Arrow left icon
Product type Paperback
Published in Apr 2024
Publisher Packt
ISBN-13 9781804610695
Length 344 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Steven Sanderson Steven Sanderson
Author Profile Icon Steven Sanderson
Steven Sanderson
David Kun David Kun
Author Profile Icon David Kun
David Kun
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Part 1:The Basics – Reading and Writing Excel Files from R and Python
2. Chapter 1: Reading Excel Spreadsheets FREE CHAPTER 3. Chapter 2: Writing Excel Spreadsheets 4. Chapter 3: Executing VBA Code from R and Python 5. Chapter 4: Automating Further – Task Scheduling and Email 6. Part 2: Making It Pretty – Formatting, Graphs, and More
7. Chapter 5: Formatting Your Excel Sheet 8. Chapter 6: Inserting ggplot2/matplotlib Graphs 9. Chapter 7: Pivot Tables and Summary Tables 10. Part 3: EDA, Statistical Analysis, and Time Series Analysis
11. Chapter 8: Exploratory Data Analysis with R and Python 12. Chapter 9: Statistical Analysis: Linear and Logistic Regression 13. Chapter 10: Time Series Analysis: Statistics, Plots, and Forecasting 14. Part 4: The Other Way Around – Calling R and Python from Excel
15. Chapter 11: Calling R/Python Locally from Excel Directly or via an API 16. Part 5: Data Analysis and Visualization with R and Python for Excel Data – A Case Study
17. Chapter 12: Data Analysis and Visualization with R and Python in Excel – A Case Study 18. Index 19. Other Books You May Enjoy

Reading Excel Spreadsheets

In the deep and wide landscape of data analysis, Excel stands tall and by your side as a trusted warrior, simplifying the process of organizing, calculating, and presenting information. Its intuitive interface and widespread usage have cemented its position as a staple in the business world. However, as the volume and complexity of data continue to grow exponentially, Excel’s capabilities may start to feel constrained. It is precisely at this point that the worlds of Excel, R, and Python converge. Extending Excel with R and Python invites you to embark on a truly transformative journey. This trip will show you the power of these programming languages as they synergize with Excel, expanding its horizons and empowering you to conquer data challenges with ease. In this book, we will delve into how to integrate Excel with R and Python, uncovering the hidden potential that lies beneath the surface and enabling you to extract valuable insights, automate processes, and unleash the true power of data analysis.

Microsoft Excel came to market in 1985 and has remained a popular spreadsheet software choice. Excel was originally known as MultiPlan. Microsoft Excel and databases in general share some similarities in terms of organizing and managing data, although they serve different purposes. Excel is a spreadsheet program that allows users to store and manipulate data in a tabular format. It consists of rows and columns, where each cell can contain text, numbers, or formulas. Similarly, a database is a structured collection of data stored in tables, consisting of rows and columns.

Both Excel and databases provide a way to store and retrieve data. In Excel, you can enter data, perform calculations, and create charts and graphs. Similarly, databases store and manage large amounts of structured data and enable querying, sorting, and filtering. Excel and databases also support the concept of relationships. In Excel, you can link cells or ranges across different sheets, creating connections between data. Databases use relationships to link tables based on common fields, allowing you to retrieve related data from multiple tables.

This chapter aims to familiarize you with reading Excel files into the R environment and performing some manipulation on them. Specifically, in this chapter, we’re going to cover the following main topics:

  • R packages for Excel manipulation
  • Reading Excel files to manipulate with R
  • Reading multiple Excel sheets with a custom R function
  • Python packages for Excel manipulation
  • Opening an Excel sheet from Python and reading the data
You have been reading a chapter from
Extending Excel with Python and R
Published in: Apr 2024
Publisher: Packt
ISBN-13: 9781804610695
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image