Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Python Design Patterns

You're reading from   Mastering Python Design Patterns A guide to creating smart, efficient, and reusable software

Arrow left icon
Product type Paperback
Published in Aug 2018
Publisher
ISBN-13 9781788837484
Length 248 pages
Edition 2nd Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Sakis Kasampalis Sakis Kasampalis
Author Profile Icon Sakis Kasampalis
Sakis Kasampalis
Kamon Ayeva Kamon Ayeva
Author Profile Icon Kamon Ayeva
Kamon Ayeva
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. The Factory Pattern 2. The Builder Pattern FREE CHAPTER 3. Other Creational Patterns 4. The Adapter Pattern 5. The Decorator Pattern 6. The Bridge Pattern 7. The Facade Pattern 8. Other Structural Patterns 9. The Chain of Responsibility Pattern 10. The Command Pattern 11. The Observer Pattern 12. The State Pattern 13. Other Behavioral Patterns 14. The Observer Pattern in Reactive Programming 15. Microservices and Patterns for the Cloud 16. Other Books You May Enjoy

The Factory Pattern

Design patterns are reusable programming solutions that have been used in various real-world contexts, and have proved to produce expected results. They are shared among programmers and continue being improved over time. This topic is popular thanks to the book by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, titled Design Patterns: Elements of Reusable Object-Oriented Software.

Gang of Four: The book by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides is also called the Gang of Four book for short (or GOF book for even shorter).

Here is a quote about design patterns from the Gang of Four book:

A design pattern systematically names, motivates, and explains a general design that addresses a recurring design problem in object-oriented systems. It describes the problem, the solution, when to apply the solution, and its consequences. It also gives implementation hints and examples. The solution is a general arrangement of objects and classes that solve the problem. The solution is customized and implemented to solve the problem in a particular context.

There are several categories of design patterns used in object-oriented programming, depending on the type of problem they address and/or the types of solutions they help us build. In their book, the Gang of Four present 23 design patterns, split into three categories: creational, structural, and behavioral.

Creational design patterns are the first category we will cover throughout this chapter, and Chapters 2, The Builder Pattern and Chapter 3, Other Creational Patterns. These patterns deal with different aspects of object creation. Their goal is to provide better alternatives for situations where direct object creation, which in Python happens within the __init__() function, is not convenient.

See https://docs.python.org/3/tutorial/classes.html for a quick overview of object classes and the special __init__() method Python uses to initialize a new class instance.

We will start with the first creational design pattern from the Gang of Four book: the factory design pattern. In the factory design pattern, a client (meaning client code) asks for an object without knowing where the object is coming from (that is, which class is used to generate it). The idea behind a factory is to simplify the object creation process. It is easier to track which objects are created if this is done through a central function, compared to letting a client create objects using a direct class instantiation. A factory reduces the complexity of maintaining an application by decoupling the code that creates an object from the code that uses it.

Factories typically come in two forms—the factory method, which is a method (or simply a function for a Python developer) that returns a different object per input parameter, and the abstract factory, which is a group of factory methods used to create a family of related objects.

In this chapter, we will discuss:

  • The factory method
  • The abstract factory
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image