Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Machine Learning Cookbook

You're reading from   Python Machine Learning Cookbook Over 100 recipes to progress from smart data analytics to deep learning using real-world datasets

Arrow left icon
Product type Paperback
Published in Mar 2019
Publisher Packt
ISBN-13 9781789808452
Length 642 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Giuseppe Ciaburro Giuseppe Ciaburro
Author Profile Icon Giuseppe Ciaburro
Giuseppe Ciaburro
Prateek Joshi Prateek Joshi
Author Profile Icon Prateek Joshi
Prateek Joshi
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. The Realm of Supervised Learning FREE CHAPTER 2. Constructing a Classifier 3. Predictive Modeling 4. Clustering with Unsupervised Learning 5. Visualizing Data 6. Building Recommendation Engines 7. Analyzing Text Data 8. Speech Recognition 9. Dissecting Time Series and Sequential Data 10. Analyzing Image Content 11. Biometric Face Recognition 12. Reinforcement Learning Techniques 13. Deep Neural Networks 14. Unsupervised Representation Learning 15. Automated Machine Learning and Transfer Learning 16. Unlocking Production Issues 17. Other Books You May Enjoy

Data preprocessing using mean removal

In the real world, we usually have to deal with a lot of raw data. This raw data is not readily ingestible by machine learning algorithms. To prepare data for machine learning, we have to preprocess it before we feed it into various algorithms. This is an intensive process that takes plenty of time, almost 80 percent of the entire data analysis process, in some scenarios. However, it is vital for the rest of the data analysis workflow, so it is necessary to learn the best practices of these techniques. Before sending our data to any machine learning algorithm, we need to cross check the quality and accuracy of the data. If we are unable to reach the data stored in Python correctly, or if we can't switch from raw data to something that can be analyzed, we cannot go ahead. Data can be preprocessed in many ways—standardization, scaling, normalization, binarization, and one-hot encoding are some examples of preprocessing techniques. We will address them through simple examples.

Getting ready

Standardization or mean removal is a technique that simply centers data by removing the average value of each characteristic, and then scales it by dividing non-constant characteristics by their standard deviation. It's usually beneficial to remove the mean from each feature so that it's centered on zero. This helps us remove bias from features. The formula used to achieve this is the following:

Standardization results in the rescaling of features, which in turn represents the properties of a standard normal distribution:

  • mean = 0
  • sd = 1

In this formula, mean is the mean and sd is the standard deviation from the mean.

How to do it...

Let's see how to preprocess data in Python:

  1. Let's start by importing the library:
>> from sklearn import preprocessing

The sklearn library is a free software machine learning library for the Python programming language. It features various classification, regression, and clustering algorithms, including support vector machines (SVMs), random forests, gradient boosting, k-means, and DBSCAN, and is designed to interoperate with the Python numerical and scientific libraries, NumPy and SciPy.

  1. To understand the outcome of mean removal on our data, we first visualize the mean and standard deviation of the vector we have just created:
>> print("Mean: ",data.mean(axis=0))
>> print("Standard Deviation: ",data.std(axis=0))

The mean() function returns the sample arithmetic mean of data, which can be a sequence or an iterator. The std() function returns the standard deviation, a measure of the distribution of the array elements. The axis parameter specifies the axis along which these functions are computed (0 for columns, and 1 for rows).

The following results are returned:

Mean: [ 1.33333333 1.93333333 -0.06666667 -2.53333333]
Standard Deviation: [1.24721913 2.44449495 1.60069429 3.30689515]

  1. Now we can proceed with standardization:
>> data_standardized = preprocessing.scale(data)

The preprocessing.scale() function standardizes a dataset along any axis. This method centers the data on the mean and resizes the components in order to have a unit variance.

  1. Now we recalculate the mean and standard deviation on the standardized data:
>> print("Mean standardized data: ",data_standardized.mean(axis=0))
>> print("Standard Deviation standardized data: ",data_standardized.std(axis=0))

The following results are returned:

Mean standardized data: [ 5.55111512e-17 -1.11022302e-16 -7.40148683e-17 -7.40148683e-17]
Standard Deviation standardized data: [1. 1. 1. 1.]

You can see that the mean is almost 0 and the standard deviation is 1.

How it works...

The sklearn.preprocessing package provides several common utility functions and transformer classes to modify the features available in a representation that best suits our needs. In this recipe, the scale() function has been used (z-score standardization). In summary, the z-score (also called the standard score) represents the number of standard deviations by which the value of an observation point or data is greater than the mean value of what is observed or measured. Values more than the mean have positive z-scores, while values less than the mean have negative z-scores. The z-score is a quantity without dimensions that is obtained by subtracting the population's mean from a single rough score and then dividing the difference by the standard deviation of the population.

There's more...

Standardization is particularly useful when we do not know the minimum and maximum for data distribution. In this case, it is not possible to use other forms of data transformation. As a result of the transformation, the normalized values do not have a minimum and a fixed maximum. Moreover, this technique is not influenced by the presence of outliers, or at least not the same as other methods.

See also

You have been reading a chapter from
Python Machine Learning Cookbook - Second Edition
Published in: Mar 2019
Publisher: Packt
ISBN-13: 9781789808452
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image