Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Scalable Data Architecture with Java

You're reading from   Scalable Data Architecture with Java Build efficient enterprise-grade data architecting solutions using Java

Arrow left icon
Product type Paperback
Published in Sep 2022
Publisher Packt
ISBN-13 9781801073080
Length 382 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Sinchan Banerjee Sinchan Banerjee
Author Profile Icon Sinchan Banerjee
Sinchan Banerjee
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Section 1 – Foundation of Data Systems
2. Chapter 1: Basics of Modern Data Architecture FREE CHAPTER 3. Chapter 2: Data Storage and Databases 4. Chapter 3: Identifying the Right Data Platform 5. Section 2 – Building Data Processing Pipelines
6. Chapter 4: ETL Data Load – A Batch-Based Solution to Ingesting Data in a Data Warehouse 7. Chapter 5: Architecting a Batch Processing Pipeline 8. Chapter 6: Architecting a Real-Time Processing Pipeline 9. Chapter 7: Core Architectural Design Patterns 10. Chapter 8: Enabling Data Security and Governance 11. Section 3 – Enabling Data as a Service
12. Chapter 9: Exposing MongoDB Data as a Service 13. Chapter 10: Federated and Scalable DaaS with GraphQL 14. Section 4 – Choosing Suitable Data Architecture
15. Chapter 11: Measuring Performance and Benchmarking Your Applications 16. Chapter 12: Evaluating, Recommending, and Presenting Your Solutions 17. Index 18. Other Books You May Enjoy

Summary

In this chapter, we learned how to analyze a data engineering requirement from scratch, draw a definite conclusion, and extract facts that will help us in our architectural decision-making process. Next, we learned how to profile source data and how such an analysis helps us build better data engineering solutions. Going further, we used facts, requirements, and our analysis to build a robust and effective architecture for a batch-based data engineering problem with a low or medium volume of data. Finally, we mapped the design to build an effective ETL batch-based data ingestion pipeline using Spring Batch and test it. Along the way, you learned how to analyze a data engineering problem from scratch and how to build similar pipelines effectively for when you are presented with a similar problem next time around.

Now that we have successfully architected and developed a batch-based solution for medium- and low-volume data engineering problems, in the next chapter, we will...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image