Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning with R

You're reading from   Machine Learning with R Expert techniques for predictive modeling to solve all your data analysis problems

Arrow left icon
Product type Paperback
Published in Jul 2015
Publisher Packt
ISBN-13 9781784393908
Length 452 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Brett Lantz Brett Lantz
Author Profile Icon Brett Lantz
Brett Lantz
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Introducing Machine Learning FREE CHAPTER 2. Managing and Understanding Data 3. Lazy Learning – Classification Using Nearest Neighbors 4. Probabilistic Learning – Classification Using Naive Bayes 5. Divide and Conquer – Classification Using Decision Trees and Rules 6. Forecasting Numeric Data – Regression Methods 7. Black Box Methods – Neural Networks and Support Vector Machines 8. Finding Patterns – Market Basket Analysis Using Association Rules 9. Finding Groups of Data – Clustering with k-means 10. Evaluating Model Performance 11. Improving Model Performance 12. Specialized Machine Learning Topics Index

Summary

Machine learning originated at the intersection of statistics, database science, and computer science. It is a powerful tool, capable of finding actionable insight in large quantities of data. Still, caution must be used in order to avoid common abuses of machine learning in the real world.

Conceptually, learning involves the abstraction of data into a structured representation, and the generalization of this structure into action that can be evaluated for utility. In practical terms, a machine learner uses data containing examples and features of the concept to be learned, and summarizes this data in the form of a model, which is then used for predictive or descriptive purposes. These purposes can be grouped into tasks, including classification, numeric prediction, pattern detection, and clustering. Among the many options, machine learning algorithms are chosen on the basis of the input data and the learning task.

R provides support for machine learning in the form of community-authored packages. These powerful tools are free to download, but need to be installed before they can be used. Each chapter in this book will introduce such packages as they are needed.

In the next chapter, we will further introduce the basic R commands that are used to manage and prepare data for machine learning. Though you might be tempted to skip this step and jump directly into thick of things, a common rule of thumb suggests that 80 percent or more of the time spent on typical machine learning projects is devoted to this step. As a result, investing in this early work will pay dividends later on.

You have been reading a chapter from
Machine Learning with R - Second Edition
Published in: Jul 2015
Publisher: Packt
ISBN-13: 9781784393908
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image