Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Deep Learning By Example

You're reading from   Deep Learning By Example A hands-on guide to implementing advanced machine learning algorithms and neural networks

Arrow left icon
Product type Paperback
Published in Feb 2018
Publisher Packt
ISBN-13 9781788399906
Length 450 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Ahmed Menshawy Ahmed Menshawy
Author Profile Icon Ahmed Menshawy
Ahmed Menshawy
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Data Science - A Birds' Eye View FREE CHAPTER 2. Data Modeling in Action - The Titanic Example 3. Feature Engineering and Model Complexity – The Titanic Example Revisited 4. Get Up and Running with TensorFlow 5. TensorFlow in Action - Some Basic Examples 6. Deep Feed-forward Neural Networks - Implementing Digit Classification 7. Introduction to Convolutional Neural Networks 8. Object Detection – CIFAR-10 Example 9. Object Detection – Transfer Learning with CNNs 10. Recurrent-Type Neural Networks - Language Modeling 11. Representation Learning - Implementing Word Embeddings 12. Neural Sentiment Analysis 13. Autoencoders – Feature Extraction and Denoising 14. Generative Adversarial Networks 15. Face Generation and Handling Missing Labels 16. Implementing Fish Recognition 17. Other Books You May Enjoy

Generative Adversarial Networks

Generative Adversarial Networks (GANs) are deep neural net architectures that consist of two networks pitted against each other (hence the name adversarial).

GANs were introduced in a paper (https://arxiv.org/abs/1406.2661) by Ian Goodfellow and other researchers, including Yoshua Bengio, at the University of Montreal in 2014. Referring to GANs, Facebook's AI research director, Yann LeCun, called adversarial training the most interesting idea in the last 10 years in machine learning.

The potential of GANs is huge, because they can learn to mimic any distribution of data. That is, GANs can be taught to create worlds eerily similar to our own in any domain: images, music, speech, or prose. They are robot artists in a sense, and their output is impressive (https://www.nytimes.com/2017/08/14/arts/design/google-how-ai-creates-new-music-and-new-artists...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image