Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hadoop Real-World Solutions Cookbook- Second Edition

You're reading from   Hadoop Real-World Solutions Cookbook- Second Edition Over 90 hands-on recipes to help you learn and master the intricacies of Apache Hadoop 2.X, YARN, Hive, Pig, Oozie, Flume, Sqoop, Apache Spark, and Mahout

Arrow left icon
Product type Paperback
Published in Mar 2016
Publisher
ISBN-13 9781784395506
Length 290 pages
Edition 2nd Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Tanmay Deshpande Tanmay Deshpande
Author Profile Icon Tanmay Deshpande
Tanmay Deshpande
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Getting Started with Hadoop 2.X FREE CHAPTER 2. Exploring HDFS 3. Mastering Map Reduce Programs 4. Data Analysis Using Hive, Pig, and Hbase 5. Advanced Data Analysis Using Hive 6. Data Import/Export Using Sqoop and Flume 7. Automation of Hadoop Tasks Using Oozie 8. Machine Learning and Predictive Analytics Using Mahout and R 9. Integration with Apache Spark 10. Hadoop Use Cases Index

Performing context Ngram in Hive


Ngrams are sequences that are collected from specific sets of words and are based on their occurrence in a given text. N-grams are generally used to find the occurrence of certain words in a sequence, which helps in the calculation of sentiment analysis. Hive provides built-in support for Ngram calculations by providing a function. In this recipe, we will take a look at how to use this function in order to analyze text data.

Getting ready

To perform this recipe, you should have a running Hadoop cluster as well as the latest version of Hive installed on it. Here, I am using Hive 1.2.1.

How to do it...

N-gram can be used to find the most frequently used word after a sequence of words in a give text dataset. To do this, let's first create a Hive table and load data into it.

Take a situation where we have data from Twitter where people are writing about their sentiments about chocolate. Let's assume that we have text data, as follows:

Chocolate is good
Chocolate is...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image